Pytorch使用教学6-张量的分割与合并

在这里插入图片描述

在使用PyTorch时,对张量的分割与合并是不可避免的操作,本节就带大家深刻理解张量的分割与合并。

在开始之前,我们先对张量的维度进行深入理解:

t2 = torch.zeros((3, 4))
# tensor([[0., 0., 0., 0.],
#         [0., 0., 0., 0.],
#         [0., 0., 0., 0.]])t2.shape
# torch.Size([3, 4])

重点理解

我们可以把shape的返回结果看成一个序列,代表着各张量维度的信息,第一个数字3代表行,即向量数,第二个数字4代表列,即每个向量中的标量数。

深入理解:t2是由3个一维张量组成,并且每个一维张量都包含四个元素。

张量的分割

chunk(tensor, chunks, dim)

chunk函数能够按照某个维度(dim)对张量进行均匀切分(chunks),并且返回结果是原张量的视图。

# 创建一个4×3的矩阵
t2 = torch.arange(12).reshape(4, 3)
t2
# tensor([[ 0,  1,  2],
#        [ 3,  4,  5],
#        [ 6,  7,  8],
#        [ 9, 10, 11]])

张量可均分时

在第0个维度(shape的第一个数字,代表向量维度)上将t2进行4等分:

# 在矩阵中,第一个维度是行,理解为shape的第一个数
tc = torch.chunk(t2, chunks = 4, dim = 0)
tc
# (tensor([[0, 1, 2]]),
#  tensor([[3, 4, 5]]),
#  tensor([[6, 7, 8]]),
#  tensor([[ 9, 10, 11]]))

根据结果可见:

  1. 返回结果是一个元组,不可变
tc[0] = torch.tensor([[1, 1, 1]])
# TypeError: 'tuple' object does not support item assignment
  1. 元组中的每个值依然是一个二维张量
tc[0]
# tensor([[0, 1, 2]])
  1. 返回的张量tc的一个视图,不是新成了一个对象
# 我们将原张量t2中的数值进行更改
t2[0] = torch.tensor([6, 6, 6])
# 再打印分块后tc的结果
tc
# (tensor([[6, 6, 6]]),
#  tensor([[3, 4, 5]]),
#  tensor([[6, 7, 8]]),
#  tensor([[ 9, 10, 11]]))

还不了解视图的同学,点击进行学习

张量不可均分时

若原张量不能均分时,chunk不会报错,会返回次一级均分结果。

# 创建一个4×3的矩阵
t2 = torch.arange(12).reshape(4, 3)
t2
# tensor([[ 0,  1,  2],
#        [ 3,  4,  5],
#        [ 6,  7,  8],
#        [ 9, 10, 11]])

将4行分为3等份,不可分,就会返回2等分的结果:

tc = torch.chunk(t2, chunks = 3, dim = 0)
tc
# (tensor([[0, 2, 2],
#          [3, 4, 5]]), 
#  tensor([[ 6,  7,  8],
#          [ 9, 10, 11]]))

将4行分为5等份,不可分,就会返回4等分的结果:

tc = torch.chunk(t2, chunks = 5, dim = 0)
# (tensor([[0, 2, 2]]),
#  tensor([[3, 4, 5]]),
#  tensor([[6, 7, 8]]),
#  tensor([[ 9, 10, 11]]))

split函数

split既能进行均分,也能进行自定义切分。需要注意的是split的返回结果也是视图。

# 第二个参数只输入一个数值时表示均分
# 第三个参数表示切分的维度
torch.split(t2, 2, dim = 0)
# (tensor([[0, 1, 2],
#          [3, 4, 5]]), 
#  tensor([[ 6,  7,  8],
#          [ 9, 10, 11]]))

chunk函数不同的是,split第二个参数可以输入一个序列,表示按照序列数值等分:

torch.split(t2, [1,3], dim = 0)
# (tensor([[0, 1, 2]]), 
#  tensor([[ 3,  4,  5],
#          [ 6,  7,  8],
#          [ 9, 10, 11]]))

当第二个参数输入一个序列时,序列的各数值的和必须等于对应维度下形状分量的取值,即shape对应的维度。

例如上述代码中,是按照第一个维度进行切分,而t2总共有4行,因此序列的求和必须等于4,也就是1+3=4,而序列中每个分量的取值,则代表切块大小。

torch.split(t2, [1, 1, 2], 0)
# (tensor([[0, 1, 2]]), 
#  tensor([[3, 4, 5]]), 
#  tensor([[ 6,  7,  8],
#         [ 9, 10, 11]]))

将张量第一个维度(行维度)分为1:1:2。

张量的合并

张量的合并操作类似与列表的追加元素,可以进行拼接、也可以堆叠。

这里一定要将dim参数与shape返回的结果相对应理解。

cat拼接函数

a = torch.zeros(2, 3)
a
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])b = torch.ones(2, 3)
b
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])

因为在张量ab中,shape的第一个位置是代表向量维度,所以当dim取0时,就是将向量进行合并,向量中的标量数不变:

torch.cat([a, b], dim = 0)
# tensor([[0., 0., 0.],
#         [0., 0., 0.],
#         [1., 1., 1.],
#         [1., 1., 1.]])

dim取1时,shape的第二个位置是代表列,即标量数,就是在列上(标量维度)进行拼接,行数(向量数)不变:

torch.cat([a, b], dim = 1)
# tensor([[0., 0., 0., 1., 1., 1.],
##        [0., 0., 0., 1., 1., 1.]])

dimshape结合理解,是不是清晰明了了?

对维度不理解的同学,点击进行学习

stack堆叠函数

和拼接不同,堆叠不是将元素拆分重装,而是将各参与堆叠的对象分装到一个更高维度的张量里。

a = torch.zeros(2, 3)
a
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])b = torch.ones(2, 3)
b
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])

堆叠之后,生成一个三维张量:

torch.stack([a, b], dim = 0)
# tensor([[[0., 0., 0.],
#          [0., 0., 0.]],
#         [[1., 1., 1.],
#          [1., 1., 1.]]])torch.stack([a, b], dim = 0).shape
# torch.Size([2, 2, 3])

此例中,就是将两个维度为1×2×3的张量堆叠为一个2×2×3的张量。

cat的区别

拼接之后维度不变,堆叠之后维度升高。拼接是把一个个元素单独提取出来之后再放到二维张量里,而堆叠则是直接将两个二维向量封装到一个三维张量中。因此,堆叠的要求更高,参与堆叠的张量必须形状完全相同。

python对比

a = [1, 2]
b = [3, 4]

cat拼接操作与listextend相似,不会改变维度,只会在已有框架内增加元素:

a.extend(b)
a
# [1, 2, 3, 4]

stack堆叠操作与listappend相似,会改变维度:

a = [1, 2]
b = [3, 4]
a.append(b)
a
# [1, 2, [3, 4]]

Pytorch张量操作大全:

Pytorch使用教学1-Tensor的创建
Pytorch使用教学2-Tensor的维度
Pytorch使用教学3-特殊张量的创建与类型转化
Pytorch使用教学4-张量的索引
Pytorch使用教学5-视图view与reshape的区别
Pytorch使用教学6-张量的分割与合并
Pytorch使用教学7-张量的广播
Pytorch使用教学8-张量的科学运算
Pytorch使用教学9-张量的线性代数运算
Pytorch使用教学10-张量操作方法大总结

有关Pytorch建模相关的AI干货请扫码关注公众号「AI有温度」阅读获取
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/50552.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

异或和+博弈论

1.最后状态a1a2a3...an0,显然a1^a2^a3...^an0 2.对ai操作,变成new ai,等价于ai异或一个数字x,使得ai^xnew ai 3.因此得出结论:对某一堆石子(ai)的操作实际上等同于对该堆石子的异或 4.当前我的状况:a1^a2^a3...^an0,假设上一步,你的状况a1^a2…

C语言边界互通传送迷宫

目录 注意事项开头程序程序的流程图程序输入与输出的效果结尾 注意事项 程序里有关字符’\033’的输出都关于Sunshine-Linux的其中一篇博客——《printf函数高级用法设置打印字体颜色和背景色等》 开头 大家好,我叫这是我58。今天,我们来看一下我用C语…

现代Java开发:使用jjwt实现JWT认证

前言 jjwt 库 是一个流行的 Java 库,用于创建和解析 JWT。我在学习spring security 的过程中看到了很多关于jwt的教程,其中最流行的就是使用jjwt实现jwt认证,但是教程之中依然使用的旧版的jjwt库,许多的类与方法已经标记弃用或者…

“分布式” 和 “集群”

“分布式” 和 “集群” 是计算机系统领域中的两个重要概念,它们在设计和实现现代计算架构时经常被提到。虽然它们有重叠之处,但也有显著的区别。 集群(Cluster) 集群 是由多个计算节点(通常是计算机或服务器&#x…

国科大《人工智能原理与算法》2021年期末试题+2024经验(2025指南)

启发式路径算法(Pohl,1977)是一种最佳优先搜索,它的评估函数是: f(n)=(2−w)⋅g(n)+w⋅h(n)f(n)=(2−w)⋅g(n)+w⋅h(n) 假设 hh 是可采纳的。 ww 取什么值能保证算法是最优的?当 w=0w=0,w=1w=1,w=2w=2 时,分别是什么搜索算法?本题以并字棋(圈与十字游戏)为例练习博…

InsCode GPU服务器快速使用

文章目录 1. 背景介绍2. 环境配置 1. 背景介绍 InsCode服务器地址:https://inscode.csdn.net/workbench?tabcomputed。 2. 环境配置 新建环境后,按照如下步骤快速配置,以便后续执行深度学习模型训练。 数据 openlane 环境依赖 Copy Mini…

数据结构与算法--顺序表(Java)

📝个人主页🌹:誓则盟约 ⏩收录专栏⏪:Java SE 🤡往期回顾🤡:Java SE--基本数据类型(详细讲解) 🌹🌹期待您的关注 🌹🌹 什么…

【Python面试题收录】Python编程基础练习题②(数据类型+文件操作+时间操作)

本文所有代码打包在Gitee仓库中https://gitee.com/wx114/Python-Interview-Questions 一、数据类型 第一题 编写一个函数,实现:先去除左右空白符,自动检测输入的数据类型,如果是整数就转换成二进制形式并返回出结果&#xff1b…

昇思25天学习打卡营第23天|CV-ResNet50迁移学习

打卡 目录 打卡 迁移学习 实战练习 数据准备 数据处理 数据处理函数 数据处理流程 数据可视化 训练模型 构建Resnet50网络 固定特征进行训练 network 的输出 训练和评估 可视化模型预测 掌握迁移学习的重点在于,了解你的模型结构,通过冻结…

数据库安全审计系统:“可视化、可控化、智能化”护航数据安全

随着政府、企事业单位的业务规模逐步扩大,数据库的数量明显增长,各数据库的访问量激增,数据库安全隐患也日益扩大,主要体现如下: 一是敏感信息被泄露。例如用户姓名、银行账户、联系电话、用户地址等重要信息被泄露。 …

【odoo17 | Owl】前端js钩子调用列表选择视图

概要 在我们选择多对一或者多对多字段的时候,经常看到可以弹出列表弹窗让人一目了然的效果,效果如下: 那么,这种效果是odoo本身封装好的组件,我们在平时的前端界面开发的时候,既不是后端视图的情况下&#…

【YOLOv5/v7改进系列】引入中心化特征金字塔的EVC模块

一、导言 现有的特征金字塔方法过于关注层间特征交互而忽视了层内特征的调控。尽管有些方法尝试通过注意力机制或视觉变换器来学习紧凑的层内特征表示,但这些方法往往忽略了对密集预测任务非常重要的被忽视的角落区域。 为了解决这个问题,作者提出了CF…

v-show 和 v-if 的区别 requests主要方法post、put和patch的简单区别

v-show 和 v-if 的区别 && requests主要方法&&post、put和patch的简单区别 v-show 和 v-if 的区别 v-show 和 v-if 都是 Vue 中用于控制元素显示与隐藏的指令 但它们有以下区别 v-show 通过 CSS 的 display 属性来控制元素的显示与隐藏,而 v-if…

数据结构(5.3_4)——线索二叉树的概念

普通二叉树找某结点前驱和后继的方法 中序线索二叉树 n个结点的二叉树,有n1个空链域!可用来记录前驱,后继的信息 中序线索二叉树的存储结构 //线索二叉树结点 typedef struct ThreadNode {ElemType data;struct BiTNode* lchild, * rchild;int ltag,…

前端面试高频50题,嘎嘎香

目录 HTML相关问题CSS相关问题JavaScript相关问题Vue.js相关问题React相关问题浏览器相关问题性能优化相关问题 1. HTML相关问题 1. 什么是Doctype?有什么作用? Doctype(文档类型声明)是一种标准通告,它告诉浏览器…

嵌入式驱动源代码(18):网络编程-原始套接字

目录 3种方式创建原始socket 常用头文件 IP_HDRINCL 三个参数 sockaddr_ll 3种方式创建原始socket socket(AF_INET, SOCK_RAW, IPPROTO_TCP|IPPROTO_UDP|IPPROTO_ICMP)发送接收ip数据包socket(PF_PACKET, SOCK_RAW, htons(ETH_P_IP|ETH_P_ARP|ETH_P_ALL))发送接收以太网数…

大模型:AI领域的下一个风口

一、什么是大模型? 大模型,顾名思义,是指具有超大规模的神经网络模型。它们通常需要海量的数据和计算资源来训练和运行。典型的大模型有 GPT-3、BERT、AlphaFold 等,这些模型在自然语言处理、生物信息学等领域取得了显著的成果。…

常见的 HTTP 状态码分类及说明

HTTP 响应状态码(HTTP status code),表示服务器对请求的处理结果。常见的 HTTP 状态码有以下几类: 1xx: 信息响应 (Informational Responses) 100 Continue: 请求已收到,客户端应继续发送请求的其余部分。101 Switch…

商场导航系统:从电子地图到AR导航,提升顾客体验与运营效率的智能解决方案

商场是集娱乐、休闲、社交于一体的综合性消费空间,随着商场规模的不断扩大和布局的日益复杂,顾客在享受丰富选择的同时,也面临着寻路难、店铺曝光率低以及商场管理效率低下等挑战。商场导航系统作为提升购物体验的关键因素,其重要…

黄景仁,笔墨间的一抹清寒

黄景仁,字汉镛,一字仲则,号鹿菲子,生于乾隆十四年(公元1749年),卒于乾隆四十八年(公元1783年),享年仅35岁。他是宋代大诗人黄庭坚的后裔,出生于常…