基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 粒子群优化算法(PSO)

4.2 分组卷积神经网络(GroupCNN)

4.3 PSO优化GroupCNN

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

.......................................................LR             = g1(1);numHiddenUnits1 = floor(g1(2))+1;% 
numHiddenUnits2 = floor(g1(3))+1;% layers = func_model2(Dim,numHiddenUnits1,numHiddenUnits2);opts = trainingOptions('adam', ...         % Adam'MaxEpochs', 1000, ...                 % 训练次数 1000'InitialLearnRate', LR, ...          % 学习率LR'LearnRateSchedule', 'piecewise', ...  'LearnRateDropFactor', 0.1, ...        'LearnRateDropPeriod', 500, ...        'Shuffle', 'every-epoch', ...          'Plots', 'training-progress', ... 'Verbose', false);%训练模型
%训练模型
[GCNN_net, INFO] = trainNetwork(Dat_train, Lab_train, layers, opts);Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;%预测
ypred2 = predict(GCNN_net, Dat_test );figure
plot(Lab_test, 'r')
hold on
plot(ypred2, 'b-o')
legend('真实值', '预测值')
grid onfigure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid onsubplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid onsave R2.mat Rerr Rlos ypred2 Lab_test
165

4.算法理论概述

       基于粒子群优化(Particle Swarm Optimization, PSO)的GroupCNN分组卷积网络时间序列预测算法是一种结合了粒子群优化技术和分组卷积神经网络(GroupCNN)的时间序列预测方法。这种方法利用粒子群优化来寻找最优的网络结构和超参数,以提高时间序列预测的准确性和效率。

4.1 粒子群优化算法(PSO)

       粒子群优化算法是一种启发式的优化算法,模拟了鸟群觅食的行为。每个粒子代表搜索空间中的一个潜在解,通过粒子之间的协作来寻找最优解。

4.2 分组卷积神经网络(GroupCNN)

       分组卷积是一种减少计算成本同时保持模型性能的有效手段。在深度学习领域,尤其是在卷积神经网络(CNN)中,分组卷积被用来降低参数数量和计算复杂度。假设输入张量为X,卷积核为W,输出张量为Y,则分组卷积的计算可以表示为:

常规卷积和分组卷积,其区别如下图所示:

4.3 PSO优化GroupCNN

      在基于PSO的GroupCNN中,我们使用PSO来调整网络的结构参数,比如卷积核大小、分组数量等,以及超参数,如学习率、批量大小等。具体步骤如下:

  1. 初始化粒子群:每个粒子代表一个可能的网络配置。
  2. 评估粒子:使用交叉验证或其他评估指标来评估每个粒子所对应的网络配置。
  3. 更新粒子状态:根据粒子群优化算法更新每个粒子的位置和速度。
  4. 终止条件:达到预设的最大迭代次数或满足收敛条件则停止。

        基于PSO的GroupCNN时间序列预测算法通过结合粒子群优化技术和分组卷积神经网络,实现了对时间序列预测问题的有效解决。通过PSO算法智能地调整网络结构和超参数,可以显著提高预测的准确性和模型的效率。这种方法特别适用于那些需要快速、准确预测的场景,如金融市场预测、天气预报等。通过合理的参数设置和模型设计,可以进一步提高预测性能,满足实际应用的需求。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/49815.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【已解决】Python ValueError: math domain error 详解

【已解决】Python ValueError: math domain error 详解 在Python编程中,遇到ValueError: math domain error是一个相对常见的问题。此错误通常表明传递给数学函数的参数超出了其定义域。本文将深入探讨此错误的根源、解决思路、具体解决方法、常见场景分析以及扩展…

【在Linux世界中追寻伟大的One Piece】Linux进程概念

目录 1 -> 冯诺依曼体系结构 2 -> 操作系统(operator System) 2.1 -> 概念 2.2 -> 系统调用和库函数 3 -> 进程 3.1 -> 概念 3.2 -> 进程-PCB 3.3 -> 进程状态 3.3.1 -> Z(Zombie)-僵尸进程 3.3.2 -> 孤儿进程 3.4 -> 进程优先级 …

Linux下如何安装配置Fail2ban防护工具

Fail2ban是一款在Linux服务器上用于保护系统免受恶意攻击的防护工具。它通过监视系统日志,检测到多次失败的登录尝试或其他恶意行为后,会自动将攻击源的IP地址加入防火墙的黑名单,从而阻止攻击者进一步访问服务器。本文将介绍如何在Linux系统…

Animate.css的使用

一、安装 npm install animate.css --save二、引入 import animate.css;三、使用 <h1class"animate__animated animate__bounce"mouseenter"mouseenter"mouseleave"mouseleave">An animated element</h1>//在js中的方法 function …

五. TensorRT API的基本使用-TensorRT-network-structure

目录 前言0. 简述1. 案例运行2. 代码分析2.1 main.cpp2.2 model.cpp 总结下载链接参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们来学习课程第五章—TensorRT API 的基本使用&#x…

Redisson分布式锁使用详解

引言 日常开发中&#xff0c;难免遇到一些并发的场景&#xff0c;为了保证接口执行的一致性&#xff0c;通常采用加锁的方式&#xff0c;因为服务是分布式部署模式&#xff0c;本地锁Reentrantlock和Synchnorized这些就先放到一边了&#xff0c;Redis的setnx锁存在无法抱保证原…

九-2、Rocky Linux软件包管理与安装 学习笔记

1. DNF的rocky linux管理 DNF: Dandified YUM,基于RPM的Linux软件包管理器&#xff0c;是YUM的下一代版本。 Dnf命令和yum命令兼容&#xff0c;依然使用yum仓库。 dnf module在软件安装上更方便&#xff0c;可以通过dnf module install 在安装软件时指定安装的版本&#xff0…

QT开发(QT的基本概述和环境的安装)

QT的概述 一.QT的介绍背景1.1 什么是QT1.2QT的发展史1.3 Qt支持的平台1.4QT版本1.5QT的优点1.6QT的应用场景 二.搭建QT开发环境2.1 QT的开发工具的下载2.2 QT环境变量配置 三.QT的三种基类四.QT Hello World程序4.1使用按钮实现4.1.1 代码方式实现4.1.2 可视化操作实现 一.QT的…

【C#】在一个给定的宽、高范围内,获取到该多边形内部的所有坐标集合?

问题点 使用C#语言在一个给定的宽、高范围内&#xff0c;获取到该多边形内部的所有坐标集合&#xff1f; 这个多边形可能存在交叉及互相重叠部分 图像的宽、高可以定义为&#xff1a;2000*2000 多边形坐标集合&#xff1a;Point[] polygon_points new Point[] { new Point…

如何在vscode中对在服务器上多卡运行的bash脚本进行debug?

问题描述 使用vscode可以很方便地添加断点&#xff0c;进行代码调试。 在使用服务器时&#xff0c;我们的python代码通常是通过bash脚本来执行的&#xff0c;那么如何进行debug呢&#xff1f; 待运行的bash 脚本示例 前半段定义了一些参数&#xff0c;后半段是执行python代码…

数据结构的概念和术语

目录 一.前言 二.数据结构的基本概念 三.数据结构的术语 一.前言 数据结构是一门研究非数值计算的程序设计中计算机的操作对象以及它们之间的关系和操作的学科。数据结构的基本数据结构包括两部分&#xff0c;线性结构跟非线性结构。 二.数据结构的基本概念 数据结构主要包括…

压测实操--kafka broker压测方案

作者&#xff1a;九月 环境信息&#xff1a; 操作系统centos7.9&#xff0c;kafka版本为hdp集群中的2.0版本。 kafka broker参数 num.replica.fetchers&#xff1a;副本抓取的相应参数&#xff0c;如果发生ISR频繁进出的情况或follower无法追上leader的情况则适当增加该值&…

CTF ssrf 基础入门

0x01 引言 我发现我其实并不是很明白这个东西&#xff0c;有些微妙&#xff0c;而且记忆中也就记得Gopherus这个工具了&#xff0c;所以重新学习了一下&#xff0c;顺便记录一下吧 0x02 辨别 我们拿到一个题目&#xff0c;他的名字可能就是题目类型&#xff0c;但是也有可能…

【使用 Pytest 记录日志文件并确保测试用例正常执行】

1. 更新测试脚本 首先&#xff0c;确保你的测试脚本 wifi_test.py 配置了日志记录&#xff0c;并包含所有测试用例&#xff1a; import subprocess import time import logging import pytest import sys# 配置日志记录 logging.basicConfig(filenamewifi_test.log, levellog…

vue侦听器(Watch)精彩案例剖析一

目录 watch介绍 监视普通数据类型 监视对象类型 watch介绍 在 Vue 中,watch主要用于监视数据的变化,并执行相应操作。一旦被监视的属性发生变化,回调函数将自动被触发。当在 Vue 中使用watch来响应数据变化时,首先要清楚,watch本质上是一个对象,且必须以对象的…

HDShredder 7 企业版案例分享: 依照国际权威标准,安全清除企业数据

HDShredder 7 企业版用户案例 天津鸿萌科贸发展有限公司是德国 Miray 公司 HDShredder 数据清除软件的授权代理商。近日&#xff0c;上海某网络科技有限公司采购 HDShredder 7 企业版x4&#xff0c;为公司数据存储资产的安全清除工作流程配备高效的执行工具。HDShredder 7 企业…

划分型dp,CF 1935C - Messenger in MAC

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 1935C - Messenger in MAC 二、解题报告 1、思路分析 比较简单的思路是反悔贪心&#xff0c;这里不展开说了&#xff0c;来说一下dp的做法 由于式子里面带绝对值&#xff0c;很烦&#xff0c;我们将pair按…

Bootstrap实现dialog上一步下一步多个弹窗交互

Bootstrap实现dialog上一步下一步多个弹窗交互 版本介绍&#xff1a; Bootstrap v3.3.7jQuery v3.5.1 一、功能介绍 重新设置bootstrap主题色内容区以card形式展示&#xff0c;纯js实现分页功能共两步骤&#xff0c;第一步选择模板&#xff0c;第二步进行其他操作步骤一内的按…

特征工程在机器学习中的重要性

特征工程在机器学习中的重要性 特征工程在机器学习中占据着至关重要的地位&#xff0c;它是连接原始数据与机器学习模型之间的桥梁。通过特征工程&#xff0c;我们可以将原始数据转换为机器学习算法能够有效利用的形式&#xff0c;从而提高模型的性能和准确性。以下是特征工程…

JAVA毕业设计153—基于Java+Springboot+小程序的校园维修管理系统小程序(源代码+数据库)

毕设所有选题&#xff1a; https://blog.csdn.net/2303_76227485/article/details/131104075 基于JavaSpringboot小程序的校园维修管理系统小程序(源代码数据库)153 一、系统介绍 本项目分为用户、维修员、管理员三种角色 1、用户&#xff1a; 注册、登录、报修申报、报修…