LangChain Routing 学习笔记

LangChain Routing 学习笔记

  • 0. 引言
  • 1. 使用提示词
  • 2. 使用 RunnableLambda

0. 引言

在使用大语言模型开发应用时,其中一个场景就是根据不同的输入,调用(或者说路由到)不同的逻辑。这就好比我们以前开发时经常使用的if ... else ... 一样。

实现路由有多种方法,下面介绍2种简单的方法。

1. 使用提示词

这种方法简单来说就是使用提示词,让大语言模型根据输入给出特定的输出。

示例代码,

from dotenv import load_dotenv, find_dotenv_ = load_dotenv(find_dotenv())
from langchain_openai import ChatOpenAI
# from langchain_anthropic import ChatAnthropic
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplatechain = (PromptTemplate.from_template("""Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.Do not respond with more than one word.<question>
{question}
</question>Classification:""")# | ChatAnthropic(model_name="claude-3-haiku-20240307")| ChatOpenAI(model="gpt-4", temperature=0)| StrOutputParser()
)chain.invoke({"question": "how do I call Anthropic?"})

输出结果,

Anthropic

2. 使用 RunnableLambda

示例代码,

from dotenv import load_dotenv, find_dotenv_ = load_dotenv(find_dotenv())
from langchain_openai import ChatOpenAI
# from langchain_anthropic import ChatAnthropic
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplatechain = (PromptTemplate.from_template("""Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.Do not respond with more than one word.<question>
{question}
</question>Classification:""")# | ChatAnthropic(model_name="claude-3-haiku-20240307")| ChatOpenAI(model="gpt-4", temperature=0)| StrOutputParser()
)
from langchain_core.prompts import PromptTemplate
# from langchain_anthropic import ChatAnthropiclangchain_chain = PromptTemplate.from_template("""You are an expert in langchain. \
Always answer questions starting with "As Harrison Chase told me". \
Respond to the following question:Question: {question}
Answer:"""
# ) | ChatAnthropic(model_name="claude-3-haiku-20240307")
) | ChatOpenAI(model="gpt-4", temperature=0)
anthropic_chain = PromptTemplate.from_template("""You are an expert in anthropic. \
Always answer questions starting with "As Dario Amodei told me". \
Respond to the following question:Question: {question}
Answer:"""
# ) | ChatAnthropic(model_name="claude-3-haiku-20240307")
) | ChatOpenAI(model="gpt-4", temperature=0)
general_chain = PromptTemplate.from_template("""Respond to the following question:Question: {question}
Answer:"""
# ) | ChatAnthropic(model_name="claude-3-haiku-20240307")
) | ChatOpenAI(model="gpt-4", temperature=0)
def route(info):if "anthropic" in info["topic"].lower():return anthropic_chainelif "langchain" in info["topic"].lower():return langchain_chainelse:return general_chain
from langchain_core.runnables import RunnableLambdafull_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route
)
full_chain.invoke({"question": "how do I use Anthropic?"})

输出,

AIMessage(content="As Dario Amodei, the co-founder of Anthropic, explained, using Anthropic's language models typically involves accessing their APIs to generate text or analyze inputs. While exact steps depend on the specific application and whether you're working with a public or private API, generally, you would:\n\n1. **Sign up for access**: Visit Anthropic's website and sign up for an account if they offer public access or reach out to them for partnership if their services are not publicly available.\n\n2. **Obtain an API key**: Once your account is set up, you'll receive an API key that authorizes your application to interact with their models.\n\n3. **Understand the API documentation**: Familiarize yourself with Anthropic's API documentation which outlines how to structure requests, what parameters are available, and how to interpret responses.\n\n4. **Make API calls**: Using a programming language of your choice (like Python), write code that constructs API requests. This usually involves specifying the prompt you want the model to respond to, the maximum length of the response, and other optional settings.\n\n5. **Process the response**: The API will return a response which is typically in JSON format. Your code should parse this response to extract the generated text or any other data provided.\n\n6. **Integrate into your application**: Depending on your use case, integrate the generated text or insights into your software, whether it's for chatbots, content generation, language translation, or analysis.\n\n7. **Respect usage guidelines and ethical considerations**: Always adhere to Anthropic's terms of service, be mindful of the ethical implications of using AI, and ensure you're handling user data responsibly.\n\nRemember that the specifics might change as Anthropic evolves its services, so always refer to their latest documentation for the most accurate instructions.", response_metadata={'token_usage': {'completion_tokens': 364, 'prompt_tokens': 47, 'total_tokens': 411}, 'model_name': 'gpt-4', 'system_fingerprint': 'fp_ollama', 'finish_reason': 'stop', 'logprobs': None}, id='run-636a9a22-389b-478f-8938-51309df9a3d1-0')

示例代码,

full_chain.invoke({"question": "how do I use LangChain?"})

输出,

AIMessage(content="As Harrison Chase explained, using LangChain involves several steps:\n\n1. **Understand Your Use Case**: First, determine what problem you want to solve or what task you aim to accomplish with LangChain. It's a framework designed to create powerful language models and AI applications.\n\n2. **Choose Components**: LangChain is modular, so you'll select the appropriate components for your use case. This might include LLMs (Large Language Models), vector databases, prompt engineering tools, and more.\n\n3. **Set Up Environment**: You need a development environment that supports the technologies used by LangChain, typically Python with libraries like Langchain, Hugging Face Transformers, or other necessary dependencies.\n\n4. **Integrate APIs**: If you're using external models or services, set up API keys and integrate them into your project.\n\n5. **Design Workflows**: Define how data will flow through the system, from input to processing by language models to output. This might involve creating chains of different components.\n\n6. **Write Code**: Implement your design using LangChain's APIs and modules. Start with simple scripts or move on to more complex applications as you become comfortable.\n\n7. **Test and Iterate**: Use sample inputs to test your setup, analyze the outputs, and refine your implementation based on the results.\n\n8. **Deploy and Monitor**: Once satisfied with the performance, deploy your application to a server or cloud platform. Continuously monitor its performance and make adjustments as needed.\n\nRemember, LangChain is about combining different AI components effectively, so it's crucial to have a clear understanding of each part you're using and how they interact. Always refer to the official documentation for the most up-to-date guidance and examples.", response_metadata={'token_usage': {'completion_tokens': 344, 'prompt_tokens': 44, 'total_tokens': 388}, 'model_name': 'gpt-4', 'system_fingerprint': 'fp_ollama', 'finish_reason': 'stop', 'logprobs': None}, id='run-abe4f2fd-9d7c-4f08-8e48-d32ff173d6e3-0')

示例代码,

full_chain.invoke({"question": "whats 2 + 2"})

输出,

AIMessage(content='4', response_metadata={'token_usage': {'completion_tokens': 2, 'prompt_tokens': 23, 'total_tokens': 25}, 'model_name': 'gpt-4', 'system_fingerprint': 'fp_ollama', 'finish_reason': 'stop', 'logprobs': None}, id='run-3c6d5a95-cac9-4dc8-a600-63180f655196-0')

完结!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/4939.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

搜索引擎的定义与运行原理

搜索引擎是一种用于在互联网或特定数据源中搜索信息的工具&#xff0c;它通过自动化程序&#xff08;称为爬虫或蜘蛛&#xff09;从网页或数据库中收集信息&#xff0c;并根据用户输入的关键词或短语返回相关的搜索结果。其运行原理可以简单概括如下&#xff1a; 爬取网页&…

cf914div2C

考虑相邻的两堆石子如果是2 3,那么先手可以选2,然后3变成1,这时后手只能选1,考虑2 4的情况,先手选1,剩下1 3,后手只能选1,剩下一个2,先手选1,剩1,后手只能选1.所以只要第一个数不为1的情况下,先手必胜,那么问题变成了找到mex(第一个未出现的数字),如果这个数字为偶数,先手是Bob…

电池管理协议SMBus/I2C在STM32CubeMX配置使用-读取SN8765电池组

一、前言 目前有个电源组需要通过i2c进行读取&#xff0c;获取一些电池信息&#xff0c;采用SMBus协议进行读取&#xff0c;其可以看作i2c的子集&#xff0c;可以直接通过i2c的接口进行读写。SMBus建立在被广泛采用的I2C总线之上&#xff0c;并定义了OSI&#xff08;开放系统互…

进行RLC防孤岛负载测试的步骤和规范

RLC防孤岛负载测试是用于检测并防止电力系统出现孤岛现象的测试方法&#xff0c;孤岛现象是指当电网因故障或停电而与主电网断开连接时&#xff0c;部分电力设备仍在运行&#xff0c;形成一个没有与主电网连接的独立电网。这种情况下&#xff0c;如果电力设备不能及时检测到孤岛…

dmdbchk检查数据库完整性正确性(达梦数据库)

dmdbchk检查数据库完整性正确性- - 达梦数据库 1 简介2 使用 dmdbchk3 dmdbchk 报告解读4 达梦数据库学习使用列表 1 简介 dmdbchk 是 DM 提供的用于检查数据库完整性、正确性的命令行工具。在服务器正常关闭后的脱机情况下&#xff0c;用户可以使用 dmdbchk 对数据库进行校验…

职场人是如何被拉开差距的?

事实上&#xff0c;职场人的差距从第一天就拉开了。 心理学里有一个词&#xff0c;叫做“首因效应&#xff0c;说的是人们在第一次接触时形成的印象&#xff0c;将会决定后续认知的基调。 入职第一天&#xff0c;从自我介绍开始&#xff0c;展示自己的特长&#xff0c;给大家…

IOT病毒分析

前言&#xff1a; 最近审计报警日志&#xff0c;发现了一个IOT病毒&#xff0c;利用的是CVE-2023-1389漏洞扫描tplink&#xff0c;进行攻击&#xff0c;有点意思&#xff0c;拿出来分析下。 发现&#xff1a; 查看流量日志&#xff0c;发现了一个有问题的访问&#xff1a; 访…

彻底理解Python相关的排序方法

左手编程&#xff0c;右手年华。大家好&#xff0c;我是一点&#xff0c;关注我&#xff0c;带你走入编程的世界。 公众号&#xff1a;一点sir&#xff0c;关注领取python编程资料 在Python中&#xff0c;列表排序是一项基础而重要的任务&#xff0c;它允许你对一系列元素进行有…

【ArcGIS 疑难杂症】无法展开和读取xls、xlsx文件

xls、xlsx文件在ArcGIS中经常用来链接属性。 但是无论ArcMap还是ArcPro&#xff0c;打开xls、xlsx文件时候可能会出现报错。 比如&#xff0c;ArcMap可以打开xls&#xff0c;但是打开xlsx时会出现下面的报错。 而ArcPro就更逊了&#xff0c;xls、xlsx两种都打不开。 以上是小…

网工内推 | 网络工程师,CCIE认证优先,最高10k*13薪

01 广东丰德科技有限公司 招聘岗位&#xff1a;网络工程师 职责描述&#xff1a; 1、负责运营商机房的网络设备的运行维护、故障应急处理&#xff1b; 2、负责各类型网络设备或网络相关的故障的故障分析及诊断&#xff1b; 3、独立完成网络项目的方案设计编写并负责方案的验证…

【后端】python数组去重和过滤的使用方法

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、数组介绍二、python数组去重和过滤1.数组去重2.数组过滤 三、总结 前言 随着开发语言及人工智能工具的普及&#xff0c;使得越来越多的人会主动学习使用一…

python数字大小写转换程序

目录 一.前言 二.完整代码 三.分析 一.前言 大小写数字又称大小写计数词,是一种用于书写数字的表示方式,它区别于阿拉伯数字。大小写数字主要用于正式文件、日期、节日和一些传统的文化表达中。 二.完整代码 info=[零,一,二,三,四,五,六,七,八,九] data=input("请…

STM32用HAL库函数实现硬件IIC

/*出处&#xff1a;【STM32入门教程-2024】第12集 IIC通信与温湿度传感器AHT20(DHT20)_哔哩哔哩_bilibili */ AHT20驱动 这篇笔记我主要介绍代码实现&#xff0c;想要了解原理的请自己看视频&#xff0c;我不过多赘述了。 AHT20通信数据帧格式&#xff1a; ①对照手册上的通…

IFM420-WRDUWZ电动机保护器EOCR-iFM420窗孔0.5-80A

韩国三和&#xff0c;EOCR&#xff0c;SAMWHA&#xff0c;Schneider&#xff0c;施耐德&#xff0c;电机保护器&#xff0c;电动机保护器&#xff0c;电子式电动机保护继电器&#xff0c;电子式过电流继电器&#xff0c;电子式欠电流继电器&#xff0c;电子式电压继电器&#x…

探索大数据混合分层架构:构建智能数据管理平台

随着大数据技术的发展和应用场景的不断拓展&#xff0c;传统的单一数据处理架构已经不能满足复杂多变的业务需求。在这样的背景下&#xff0c;大数据混合分层架构应运而生&#xff0c;成为了构建智能数据管理平台的关键。本文将深入探讨大数据混合分层架构的设计原则、核心组件…

90天玩转Python—19—Python面向对象编程:类与对象的详细介绍和实例

90天玩转Python系列文章目录 90天玩转Python—01—基础知识篇:C站最全Python标准库总结 90天玩转Python--02--基础知识篇:初识Python与PyCharm 90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装) 90天玩转Python—04—基础知识篇:Pytho…

JS事件循环、宏任务与微任务

在JavaScript中&#xff0c;事件循环&#xff08;Event Loop&#xff09;是处理异步操作的核心机制。它负责执行代码&#xff0c;处理事件&#xff0c;并在适当的时候调度回调。为了更好地理解JavaScript的执行模型&#xff0c;我们需要深入探讨事件循环、宏任务&#xff08;Ma…

【信息系统项目管理师知识点速记】范围管理:收集需求

9.4 收集需求 收集需求是为实现目标而确定、记录并管理干系人的需要和需求的过程。本过程的主要作用是为定义产品范围和项目范围奠定基础。本过程仅开展一次或仅在项目的预定义点开展。 9.4.1 输入 立项管理文件 商业论证产生的文件,描述了为满足业务需要而应该达到的必要、期…

从文本框限制字符输入,理解代码抽象过程(四次抽象到简单工厂到反射)

这里写目录标题 背景原因抽象过程第一次抽象第二次抽象第三次抽象第四次抽象简单工厂反射 背景 学生信息管理系统中有很多文本框的校验&#xff0c;其中有一点&#xff0c;就是不允许输入过长的信息。 原因 1、文本框校验限制输入长度确保用户内容不超出系统或数据库容量限制…

基于SpringBoot+Vue高校宣讲会管理系统设计与实现

项目介绍&#xff1a; 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装高校宣讲会管理系统软件来发挥其高效地信息…