文章目录
- AVL树
- AVL树的规则或原理
- AVL树的实现
- 1.节点的定义
- 2.功能和接口等的实现
- 默认构造函数,析构函数
- 拷贝构造函数
- 插入
- 搜索
- 打印函数
- 检查是否为平衡树,检查平衡因子
- 旋转
AVL树
AVL树,全称Adelson-Velsky和Landis树,是一种自平衡的二叉搜索树。它于1962年由苏联科学家Adelson-Velsky和Landis首次提出。AVL树具有以下特点:树中任一节点的左右子树高度差不超过1,因此AVL树是一种严格平衡的二叉搜索树。在AVL树上进行查找、插入和删除操作的时间复杂度均为O(log n),大大提高了搜索效率。
AVL树的规则或原理
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
- 它的左右子树都是AVL树
- 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。
AVL树的实现
1.节点的定义
首先,我们定义AVL树的节点结构
template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;//值 AVLTreeNode<K, V>* _left;//该节点的左孩子AVLTreeNode<K, V>* _right;//该节点的右孩子AVLTreeNode<K, V>* _parent;//该节点的父节点int _bf; // balance factor(平衡因子)AVLTreeNode(const pair<K, V>& kv):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _bf(0){}
};
2.功能和接口等的实现
默认构造函数,析构函数
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public://默认构造函数,用来初始化AVL树,将根节点置空来表示树是空的AVLTree() = default;//析构函数~AVLTree(){Destroy(_root);_root = nullptr;}
private:void Destroy(Node* root){if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;}
private:Node* _root = nullptr;
};
拷贝构造函数
template<class K, class V>
class AVLTree
{//拷贝构造AVLTree(const AVLTree<K, V>& t){_root = Copy(t._root);}private://用递归来进行赋值AVL树的节点Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newRoot = new Node(root->_key, root->_value);newRoot->_left = Copy(root->_left);newRoot->_right = Copy(root->_right);return newRoot;}private:Node* _root = nullptr;
};
插入
template<class K, class V>
class AVLTree
{
private:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// 更新平衡因子while (parent){if (cur == parent->_left)parent->_bf--;elseparent->_bf++;if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 不平衡了,旋转处理if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else{RotateLR(parent);}break;}else{assert(false);}}return true;}private:Node* _root = nullptr;
};
搜索
template<class K, class V>
class AVLTree
{
private:Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return cur;}}return nullptr;}private:Node* _root = nullptr;
};
打印函数
template<class K, class V>
class AVLTree
{void InOrder(){_InOrder(_root);cout << endl;}
private:void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}
private:Node* _root = nullptr;
};
检查是否为平衡树,检查平衡因子
template<class K, class V>
class AVLTree
{
bool IsBanlanceTree(){return _IsBanlanceTree(_root);}
private://计算平衡因子函数int _Height(Node* root){if (root == nullptr){return 0;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}//判断是否为平衡树的函数bool _IsBanlanceTree(Node* root){//空树返回真if (nullptr == root){return true;}//计算root的平衡因子:即root左右子树高度差int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);int diff = rightHeight - leftHeight;//如果计算出的平衡因子与root的平衡因子不相等//或,root平衡因子的绝对值超过一,则不是AVL树/*if (abs(diff) < 2 || root->_bf != diff){return false;}*/if (abs(diff) >= 2){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != diff){cout << root->_kv.first << "平衡因子异常" << endl;return false;}//root的左右都是AVL树那么概述一定是AVL树return _IsBanlanceTree(root->_left) && _IsBanlanceTree(root->_right);}
private:Node* _root = nullptr;
};
旋转
template<class K, class V>
class AVLTree
{void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* parentParent = parent->_parent;csubR->_left = parent;parent->_parent = subR;if (parentParent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* parentParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parentParent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}parent->_bf = subL->_bf = 0;}void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}}
private:Node* _root = nullptr;
};