C++各种排序算法详解及示例源码

1、排序算法

  排序算法(sorting algorithm)用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用,因为有序数据通常能够被更高效地查找、分析和处理。

1.1 评价维度

  运行效率:我们期望排序算法的时间复杂度尽量低,且总体操作数量较少(时间复杂度中的常数项变小)。对于大数据量的情况,运行效率显得尤为重要。

  就地性:顾名思义,原地排序通过在原数组上直接操作实现排序,无须借助额外的辅助数组,从而节省内存。通常情况下,原地排序的数据搬运操作较少,运行速度也更快。

  稳定性:稳定排序在完成排序后,相等元素在数组中的相对顺序不发生改变。

  稳定排序是多级排序场景的必要条件。假设我们有一个存储学生信息的表格,第 1 列和第 2 列分别是姓名和年龄。在这种情况下,非稳定排序可能导致输入数据的有序性丧失:

//输入数据是按照姓名排序好的
// (name, age)('A', 19)('B', 18)('C', 21)('D', 19)('E', 23)
//假设使用非稳定排序算法按年龄排序列表,
//结果中 ('D', 19) 和 ('A', 19) 的相对位置改变,
//输入数据按姓名排序的性质丢失('B', 18)('D', 19)('A', 19)('C', 21)('E', 23)

  自适应性:自适应排序的时间复杂度会受输入数据的影响,即最佳时间复杂度、最差时间复杂度、平均时间复杂度并不完全相等。

  自适应性需要根据具体情况来评估。如果最差时间复杂度差于平均时间复杂度,说明排序算法在某些数据下性能可能劣化,因此被视为负面属性;而如果最佳时间复杂度优于平均时间复杂度,则被视为正面属性。

  是否基于比较:基于比较的排序依赖比较运算符来判断元素的相对顺序,从而排序整个数组,理论最优时间复杂度为 O(nlogn) 。而非比较排序不使用比较运算符,时间复杂度可达 O(n),但其通用性相对较差。

1.2 理想排序算法

  运行快、原地、稳定、正向自适应、通用性好。显然,迄今为止尚未发现兼具以上所有特性的排序算法。因此,在选择排序算法时,需要根据具体的数据特点和问题需求来决定。接下来,我们将共同学习各种排序算法,并基于上述评价维度对各个排序算法的优缺点进行分析。

2、排序算法类别

2.1 选择排序

  选择排序(selection sort)的工作原理非常简单:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。时间复杂度为 O(n²),空间复杂度为O(1)
设数组的长度为 n,选择排序的算法流程如下所示:
1)初始状态下,所有元素未排序,即未排序(索引)区间为[0,n-1] 。
2)选取区间 [0,n-1] 中的最小元素,将其与索引 0处的元素交换。完成后,数组前 1 个元素已排序。
3)选取区间[1,n-1] 中的最小元素,将其与索引 1处的元素交换。完成后,数组前 2 个元素已排序。
4)以此类推。经过 n-1轮选择与交换后,数组前 n-1个元素已排序。
5)仅剩的一个元素必定是最大元素,无须排序,因此数组排序完成。

/* 选择排序 */
void selectionSort(vector<int> &nums) {int n = nums.size();// 外循环:未排序区间为 [i, n-1]for (int i = 0; i < n - 1; i++) {// 内循环:找到未排序区间内的最小元素int k = i;for (int j = i + 1; j < n; j++) {if (nums[j] < nums[k])k = j; // 记录最小元素的索引}// 将该最小元素与未排序区间的首个元素交换swap(nums[i], nums[k]);}
}

2.2 冒泡排序

  冒泡排序(bubble sort)通过连续地比较与交换相邻元素实现排序。这个过程就像气泡从底部升到顶部一样,因此得名冒泡排序。时间复杂度为 O(n²),但当输入数组完全有序时,可达到最佳时间复杂度 O(n),空间复杂度为O(1)

设数组的长度为 n,冒泡排序的算法流程如下所示:
1)首先,对 n 个元素执行“冒泡”,将数组的最大元素交换至正确位置 。
2)接下来,对剩余 n-1个元素执行“冒泡”,将第二大元素交换至正确位置。
3)以此类推,经过 n-1轮“冒泡”后,前 n-1 大的元素都被交换至正确位置。
4)仅剩的一个元素必定是最小元素,无须排序,因此数组排序完成。

/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(vector<int> &nums) {// 外循环:未排序区间为 [0, i]for (int i = nums.size() - 1; i > 0; i--) {bool flag = false; // 初始化标志位// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端for (int j = 0; j < i; j++) {if (nums[j] > nums[j + 1]) {// 交换 nums[j] 与 nums[j + 1]// 这里使用了 std::swap() 函数swap(nums[j], nums[j + 1]);flag = true; // 记录交换元素}}if (!flag)break; // 此轮“冒泡”未交换任何元素,直接跳出}
}

2.3 插入排序

  插入排序(insertion sort)是一种简单的排序算法,它的工作原理与手动整理一副牌的过程非常相似。具体来说,我们在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小,并将该元素插入到正确的位置。时间复杂度为 O(n²),但当输入数组完全有序时,可达到最佳时间复杂度 O(n),空间复杂度为O(1)

  实际上,许多编程语言(例如 Java)的内置排序函数采用了插入排序,大致思路为:对于长数组,采用基于分治策略的排序算法,例如快速排序;对于短数组,直接使用插入排序

设数组的长度为 n,插入排序的算法流程如下所示:
1)初始状态下,数组的第 1 个元素已完成排序。
2)选取数组的第 2 个元素作为 base ,将其插入到正确位置后,数组的前 2 个元素已排序。
3)选取第 3 个元素作为 base ,将其插入到正确位置后,数组的前 3 个元素已排序。
4)以此类推,在最后一轮中,选取最后一个元素作为 base ,将其插入到正确位置后,所有元素均已排序。

/* 插入排序 */
void insertionSort(vector<int> &nums) {// 外循环:已排序区间为 [0, i-1]for (int i = 1; i < nums.size(); i++) {int base = nums[i], j = i - 1;// 内循环:将 base 插入到已排序区间 [0, i-1] 中的正确位置while (j >= 0 && nums[j] > base) {nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位j--;}nums[j + 1] = base; // 将 base 赋值到正确位置}
}

2.4 快速排序

  快速排序(quick sort)是一种基于分治策略的排序算法,运行高效,应用广泛。快速排序的核心操作是“哨兵划分”,其目标是:选择数组中的某个元素作为“基准数”,将所有小于基准数的元素移到其左侧,而大于基准数的元素移到其右侧。时间复杂度为 O(nlogn),空间复杂度为O(n)

  快速排序为什么快? 从名称上就能看出,快速排序在效率方面应该具有一定的优势。尽管快速排序的平均时间复杂度与“归并排序”和“堆排序”相同,但通常快速排序的效率更高,主要有以下原因。

  • 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 O(n²),没有归并排序稳定,但在绝大多数情况下,快速排序能在 O(nlogn) 的时间复杂度下运行。
  • 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较高。而像“堆排序”这类算法需要跳跃式访问元素,从而缺乏这一特性。
  • 复杂度的常数系数小:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与“插入排序”比“冒泡排序”更快的原因类似。

设数组的长度为 n,快速排序的算法流程如下所示:
1)首先,对原数组执行一次“哨兵划分”,得到未排序的左子数组和右子数组。
2)然后,对左子数组和右子数组分别递归执行“哨兵划分”。
3)持续递归,直至子数组长度为 1 时终止,从而完成整个数组的排序。

/* 选取三个候选元素的中位数 */
int medianThree(vector<int> &nums, int left, int mid, int right) {int l = nums[left], m = nums[mid], r = nums[right];if ((l <= m && m <= r) || (r <= m && m <= l))return mid; // m 在 l 和 r 之间if ((m <= l && l <= r) || (r <= l && l <= m))return left; // l 在 m 和 r 之间return right;
}/* 哨兵划分(三数取中值) */
int partition(vector<int> &nums, int left, int right) {// 选取三个候选元素的中位数int med = medianThree(nums, left, (left + right) / 2, right);// 将中位数交换至数组最左端swap(nums, left, med);// 以 nums[left] 为基准数int i = left, j = right;while (i < j) {while (i < j && nums[j] >= nums[left])j--; // 从右向左找首个小于基准数的元素while (i < j && nums[i] <= nums[left])i++;          // 从左向右找首个大于基准数的元素swap(nums, i, j); // 交换这两个元素}swap(nums, i, left); // 将基准数交换至两子数组的分界线return i;            // 返回基准数的索引
}/* 快速排序(尾递归优化) */
void quickSort(vector<int> &nums, int left, int right) {// 子数组长度为 1 时终止while (left < right) {// 哨兵划分操作int pivot = partition(nums, left, right);// 对两个子数组中较短的那个执行快速排序if (pivot - left < right - pivot) {quickSort(nums, left, pivot - 1); // 递归排序左子数组left = pivot + 1;                 // 剩余未排序区间为 [pivot + 1, right]} else {quickSort(nums, pivot + 1, right); // 递归排序右子数组right = pivot - 1;                 // 剩余未排序区间为 [left, pivot - 1]}}
}

2.5 归并排序

  归并排序(merge sort)是一种基于分治策略的排序算法,包含图 11-10 所示的“划分”和“合并”阶段。划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。时间复杂度为 O(nlogn),空间复杂度为O(n)

划分阶段”从顶至底递归地将数组从中点切分为两个子数组:
1)计算数组中点 mid ,递归划分左子数组(区间[left, mid])和右子数组(区间[mid+1, right] )。
2)递归执行步骤 1. ,直至子数组区间长度为 1 时终止。
合并阶段”从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。

/* 合并左子数组和右子数组 */
void merge(vector<int> &nums, int left, int mid, int right) {// 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]// 创建一个临时数组 tmp ,用于存放合并后的结果vector<int> tmp(right - left + 1);// 初始化左子数组和右子数组的起始索引int i = left, j = mid + 1, k = 0;// 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中while (i <= mid && j <= right) {if (nums[i] <= nums[j])tmp[k++] = nums[i++];elsetmp[k++] = nums[j++];}// 将左子数组和右子数组的剩余元素复制到临时数组中while (i <= mid) {tmp[k++] = nums[i++];}while (j <= right) {tmp[k++] = nums[j++];}// 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间for (k = 0; k < tmp.size(); k++) {nums[left + k] = tmp[k];}
}/* 归并排序 */
void mergeSort(vector<int> &nums, int left, int right) {// 终止条件if (left >= right)return; // 当子数组长度为 1 时终止递归// 划分阶段int mid = (left + right) / 2;    // 计算中点mergeSort(nums, left, mid);      // 递归左子数组mergeSort(nums, mid + 1, right); // 递归右子数组// 合并阶段merge(nums, left, mid, right);
}

2.6 堆排序

  堆排序(heap sort)是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。时间复杂度为 O(n²),但当输入数组完全有序时,可达到最佳时间复杂度 O(n),空间复杂度为O(1)

设数组的长度为 n,堆排序的算法流程如下所示:
1)输入数组并建立大顶堆。完成后,最大元素位于堆顶。
2)将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 1,已排序元素数量加1 。
3)从堆顶元素开始,从顶到底执行堆化操作(sift down)。完成堆化后,堆的性质得到修复。
4)循环执行第 2. 步和第 3. 步。循环 n-1轮后,即可完成数组排序。

/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(vector<int> &nums, int n, int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = 2 * i + 1;int r = 2 * i + 2;int ma = i;if (l < n && nums[l] > nums[ma])ma = l;if (r < n && nums[r] > nums[ma])ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i) {break;}// 交换两节点swap(nums[i], nums[ma]);// 循环向下堆化i = ma;}
}/* 堆排序 */
void heapSort(vector<int> &nums) {// 建堆操作:堆化除叶节点以外的其他所有节点for (int i = nums.size() / 2 - 1; i >= 0; --i) {siftDown(nums, nums.size(), i);}// 从堆中提取最大元素,循环 n-1 轮for (int i = nums.size() - 1; i > 0; --i) {// 交换根节点与最右叶节点(交换首元素与尾元素)swap(nums[0], nums[i]);// 以根节点为起点,从顶至底进行堆化siftDown(nums, i, 0);}
}

2.7 桶排序

  桶排序(bucket sort)是分治策略的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。时间复杂度为 O(n+k),空间复杂度为O(n+k)

考虑一个长度为 n的数组,其元素是范围 [0,1)内的浮点数,桶排序的算法流程如下所示:
1)初始化 k个桶,将 n个元素分配到 k 个桶中。
2)对每个桶分别执行排序(这里采用编程语言的内置排序函数) 。
3)按照桶从小到大的顺序合并结果。

/* 桶排序 */
void bucketSort(vector<float> &nums) {// 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素int k = nums.size() / 2;vector<vector<float>> buckets(k);// 1. 将数组元素分配到各个桶中for (float num : nums) {// 输入数据范围为 [0, 1),使用 num * k 映射到索引范围 [0, k-1]int i = num * k;// 将 num 添加进桶 bucket_idxbuckets[i].push_back(num);}// 2. 对各个桶执行排序for (vector<float> &bucket : buckets) {// 使用内置排序函数,也可以替换成其他排序算法sort(bucket.begin(), bucket.end());}// 3. 遍历桶合并结果int i = 0;for (vector<float> &bucket : buckets) {for (float num : bucket) {nums[i++] = num;}}
}

2.8 计数排序

  计数排序(counting sort)通过统计元素数量来实现排序,通常应用于整数数组。时间复杂度为 O(n+m),空间复杂度为O(n+m)

给定一个长度为 n的数组 nums ,其中的元素都是“非负整数”,计数排序的算法流程如下所示:
1)遍历数组,找出其中的最大数字,记为 m,然后创建一个长度为 m+1的辅助数组counter 。
2)借助 counter 统计 nums 中各数字的出现次数,其中 counter[num] 对应数字 num 的出现次数。统计方法很简单,只需遍历 nums(设当前数字为 num),每轮将 counter[num] 增加 1
即可 。
3)由于 counter 的各个索引天然有序,因此相当于所有数字已经排序好了。接下来,我们遍历 counter ,根据各数字出现次数从小到大的顺序填入 nums 即可。

/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(vector<int> &nums) {// 1. 统计数组最大元素 mint m = 0;for (int num : nums) {m = max(m, num);}// 2. 统计各数字的出现次数// counter[num] 代表 num 的出现次数vector<int> counter(m + 1, 0);for (int num : nums) {counter[num]++;}// 3. 遍历 counter ,将各元素填入原数组 numsint i = 0;for (int num = 0; num < m + 1; num++) {for (int j = 0; j < counter[num]; j++, i++) {nums[i] = num;}}
}

  计数排序只适用于非负整数。若想将其用于其他类型的数据,需要确保这些数据可以转换为非负整数,并且在转换过程中不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去。

  计数排序适用于数据量大但数据范围较小的情况。比如,在上述示例中 m不能太大,否则会占用过多空间。而当 n<<m 时,计数排序使用O(m) 时间,可能比O(nlogn) 的排序算法还要慢。

2.9 基数排序

  基数排序(radix sort)的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。时间复杂度为 O(nk),空间复杂度为O(n+d)

以学号数据为例,假设数字的最低位是第1位,最高位是第8位,基数排序的算法流程如下所示:
1)初始化位数 k=1。
2)对学号的第k位执行“计数排序”。完成后,数据会根据第k位从小到大排序 。
3)将k增加 1,然后返回步骤 2. 继续迭代,直到所有位都排序完成后结束。

/* 获取元素 num 的第 k 位,其中 exp = 10^(k-1) */
int digit(int num, int exp) {// 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算return (num / exp) % 10;
}/* 计数排序(根据 nums 第 k 位排序) */
void countingSortDigit(vector<int> &nums, int exp) {// 十进制的位范围为 0~9 ,因此需要长度为 10 的桶数组vector<int> counter(10, 0);int n = nums.size();// 统计 0~9 各数字的出现次数for (int i = 0; i < n; i++) {int d = digit(nums[i], exp); // 获取 nums[i] 第 k 位,记为 dcounter[d]++;                // 统计数字 d 的出现次数}// 求前缀和,将“出现个数”转换为“数组索引”for (int i = 1; i < 10; i++) {counter[i] += counter[i - 1];}// 倒序遍历,根据桶内统计结果,将各元素填入 resvector<int> res(n, 0);for (int i = n - 1; i >= 0; i--) {int d = digit(nums[i], exp);int j = counter[d] - 1; // 获取 d 在数组中的索引 jres[j] = nums[i];       // 将当前元素填入索引 jcounter[d]--;           // 将 d 的数量减 1}// 使用结果覆盖原数组 numsfor (int i = 0; i < n; i++)nums[i] = res[i];
}/* 基数排序 */
void radixSort(vector<int> &nums) {// 获取数组的最大元素,用于判断最大位数int m = *max_element(nums.begin(), nums.end());// 按照从低位到高位的顺序遍历for (int exp = 1; exp <= m; exp *= 10)// 对数组元素的第 k 位执行计数排序// k = 1 -> exp = 1// k = 2 -> exp = 10// 即 exp = 10^(k-1)countingSortDigit(nums, exp);
}

相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数 过大,可能导致时间复杂度大于 O(n²)

3、总结

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/4481.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣数据库题库学习(4.25日)

1484. 按日期分组销售产品 问题链接 思路与分析 编写解决方案找出每个日期、销售的不同产品的数量及其名称。 每个日期的销售产品名称应按词典序排列。 返回按 sell_date 排序的结果表。我来分析一下&#xff0c;这里的题目要求其实就是统计不同日期下的销售产品数&#xf…

Matlab 使用subplot绘制多个子图,一元拟合

实现效果&#xff1a; clc; clear;filename sri.xlsx; % 确认文件路径data readtable(filename); datavalue data{:,2:end}; datavalue datavalue;fig figure(Position, [0, 0, 1500, 900]); indexString ["(a)","(b)","(c)","(d)&qu…

<计算机网络自顶向下> Internet Protocol(未完成)

互联网中的网络层 IP数据报格式 ver: 四个比特的版本号&#xff08;IPV4 0100, IPV6 0110&#xff09; headlen&#xff1a;head的长度&#xff08;头部长度字段&#xff08;IHL&#xff09;指定了头部的长度&#xff0c;以32位字&#xff08;4字节&#xff09;为单位计算。这…

可替换XC6206P332MR的润石超低功耗LDO RS3221-3.3YF3助力智能门锁设计,精度低至1%

润石科技的RS3221&#xff0c;可满足超低功耗&#xff0c;在智能门锁设计时&#xff0c;兼容替换TOREX的XC6206P332MR&#xff0c;具体请参考图1参数对比&#xff1a; 图1&#xff1a;RS3221-3.3YF3与XC6206P332MR电性能参数对比 通过上表可知&#xff0c; 1、 RS3221-3.3YF3…

家政服务小程序:家政行业的数字化转型

随着大众生活水平的提高&#xff0c;以及老龄化的加速&#xff0c;家政服务已经成为了大众生活中不可或缺的一部分。目前&#xff0c;我国家政服务市场的规模在持续扩大&#xff0c;发展前景一片大好。在日益提升的家政需求下&#xff0c;大众对家政服务的种类也逐渐多样。 为…

【ARMv9 DSU-120 系列 4.1 -- Utility bus 详细介绍 2】

请阅读【Arm DynamIQ™ Shared Unit-120 专栏 】 文章目录 ARM DSU-120DSU-120 Utiity BusCluster and core PPUPPU寄存器的访问性PPU寄存器的作用系统组件基地址ARM DSU-120 DSU-120 Utiity Bus 在ARMv9架构中,DSU-120(Dynamic Shared Unit 120)是一个关键组件,用于管理核…

炒股自动化:券商官方,散户可用,查询订单状态API如何用?

券商官方的接口&#xff0c;个人账户可申请&#xff0c;入金门槛低&#xff0c;接入文档完善&#xff0c;技术支持好的&#xff0c;经过我们筛选后&#xff0c;只有一家符合 会编程&#xff0c;有基础&#xff0c;只是需要API接口的朋友不用看这些&#xff0c;不会写程序的朋友…

stm32智能小车前进,后退,左转,右转,停止

本文代码使用 HAL 库。 文章目录 前言一、电机模块介绍二、原理图分析三、电机驱动小车运动原理1. **小车前进&#xff0c;后退&#xff0c;停止**2&#xff0c;小车左转&#xff0c;右转3&#xff0c;左自旋&#xff0c;右自旋 四&#xff0c;cubeMX 配置五&#xff0c;代码模…

基础款:Dockerfile 文件

# bash复制代码# 使用 Node.js 16 作为基础镜像 # 指定一个已经存在的镜像作为模版&#xff0c;第一条必须是from FROM node:16# 将当前工作目录设置为/app # WORKDIR /app# 方法一&#xff1a;用dockerfile命令&#xff1a;进行下载打包文件 # 将 package.json 和 package-loc…

机器人系统开发ros2-基础实践02-自定义一个机器人动作aciton服务端和客户端(c++ 实现)

aciton 是 ROS 中异步通信的一种形式。 操作客户端向操作服务器发送目标请求。 动作服务器将目标反馈和结果发送给动作客户端。 先决条件&#xff1a; 将需要上一个 教程创建操作action_tutorials_interfaces中定义的包和接口。Fibonacci.action 步骤1&#xff1a; 1.1 创建…

MySQL recursive 递归

MySQL 从最内的select开始执行&#xff0c;但是同一个select clause可以在查询的结果上继续查询。 SELECT menu_id,parent_id,(SELECT m1.parent_id FROM sys_menu AS m1 WHERE m1.menu_idm.parent_id) FROM sys_menu AS m WHERE m.menu_id 89 方案1.通过recursive递归 使用…

吴恩达2022机器学习专项课程(一) 6.2 逻辑回归第三周课后实验:Lab2逻辑回归

问题预览/关键词 逻辑回归预测分类创建逻辑回归算法Sigmoid函数Sigmoid函数的表示sigmoid输出的结果Numpy计算指数的方法实验python实现sigmoid函数打印输入的z值和sigmoid计算的值可视化z值和sigmoid的值添加更多数据&#xff0c;使用逻辑回归可以正常预测分类![在这里插入图片…

ESP32-S3如何用socket通信

实验目的&#xff1a; 通过 Socket 编程实现 pyWiFi-ESP32-S3 与电脑服务器助手建立连接&#xff0c;相互收 发数据。 首先先来简单了解一下Socket 我们先来看看网络层级模型图&#xff0c;这是构成网络通信的基础&#xff1a; 我们看看 TCP/IP 模型的传输层和应用层&…

SpringBoot + Vue实现Github第三方登录

前言&#xff1a;毕业设计终于好了&#xff0c;希望能有空多写几篇 1. 获取Github账号的Client ID和Client secrets 首先点击这个链接进入Github的OAuth Apps页面&#xff0c;页面展示如下&#xff1a; 之后我们可以创建一个新的apps: 填写资料&#xff1a; 创建之后就可以获…

WhatsApp解封方法和防封技巧分享,内附解封话术!

WhatsApp 已成为外贸人员不可或缺的沟通工具&#xff0c;它不仅加速了全球范围内的客户沟通&#xff0c;还提供了一个方便快捷的社交媒体营销平台。然而&#xff0c;面对WhatsApp账号被封的问题&#xff0c;许多外贸人常常感到束手无策。本文旨在分享有效的WhatsApp解封方法&am…

西湖大学赵世钰老师【强化学习的数学原理】学习笔记2节

强化学习的数学原理是由西湖大学赵世钰老师带来的关于RL理论方面的详细课程&#xff0c;本课程深入浅出地介绍了RL的基础原理&#xff0c;前置技能只需要基础的编程能力、概率论以及一部分的高等数学&#xff0c;你听完之后会在大脑里面清晰的勾勒出RL公式推导链条中的每一个部…

BKP备份寄存器RTC实时时钟

文章目录 BKP简介相关引脚BKP基本结构 RTC简介RTC框图三种时钟源RTC基本结构 硬件电路RTC操作注意事项 BKP简介 BKP&#xff08;Backup Registers&#xff09;备份寄存器BKP可用于存储用户应用程序数据。当VDD&#xff08;2.0~ 3.6V&#xff09;电源被切断&#xff0c;他们仍然…

【QT】ROS2 Humble联合使用QT教程

【QT】ROS2 Humble联合使用QT教程 文章目录 【QT】ROS2 Humble联合使用QT教程1. 安装ROSProjectManager插件2. 创建ROS项目3.一个快速体验的demoReference 环境的具体信息如下&#xff1a; ubunt 22.04ros2 humbleQt Creator 13.0.0ROS ProjectManager 13.0.0 本文建立在已经…

MT3030 天梯赛

跟MT3029战神小码哥类似&#xff0c;都是贪心堆。注意开long long 这里的堆顶为战斗力最小的&#xff0c;便于贪心的反悔操作。先按容忍度从大到小排序&#xff08;q中总容忍度取决于最小的容忍度&#xff09;&#xff0c;再向q中存数&#xff0c;存到不能容忍之后再把堆顶踢出…

深度学习-线性回归+基础优化算法

目录 线性模型衡量预估质量训练数据参数学习训练损失最小化损失来学习参数显式解 总结基础优化梯度下降选择学习率 小批量随机梯度下降选择批量大小 总结线性回归的从零开始实现实现一个函数读取小批量效果展示这里可视化看一下 线性回归从零开始实现线性回归的简洁实现效果展示…