Kaggle入门竞赛-对推特灾难文本二分类
这个是二月份学习的,最近整理资料所以上传到博客备份一下
数据在这里:https://www.kaggle.com/competitions/nlp-getting-started/data
github(jupyter notebook):https://github.com/ziggystardust-pop/bert-bi-classification.git
使用BERT(transformers库)对推特灾难文本二分类
xxx着火了(灾难)
火烧云像是燃烧的火焰(非灾难)
import os
import pandas
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
# 用于加载bert模型的分词器
from transformers import AutoTokenizer
# 用于加载bert模型
from transformers import AutoModel
from pathlib import Path
from tqdm.notebook import tqdm
batch_size = 16
# 文本的最大长度
text_max_length = 128
epochs = 100
# 取多少训练集的数据作为验证集
validation_ratio = 0.1
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 每多少步,打印一次loss
log_per_step = 50# 数据集所在位置
dataset_dir = Path("/kaggle/input/nlp-getting-started/")
os.makedirs(dataset_dir) if not os.path.exists(dataset_dir) else ''# 模型存储路径
model_dir = Path("/kaggle/working/")
# 如果模型目录不存在,则创建一个
os.makedirs(model_dir) if not os.path.exists(model_dir) else ''print("Device:", device)
Device: cuda
数据处理
加载数据集,查看文本最大长度
pd_data = pandas.read_csv(dataset_dir / 'train.csv')
pd_data
id | keyword | location | text | target | |
---|---|---|---|---|---|
0 | 1 | NaN | NaN | Our Deeds are the Reason of this #earthquake M... | 1 |
1 | 4 | NaN | NaN | Forest fire near La Ronge Sask. Canada | 1 |
2 | 5 | NaN | NaN | All residents asked to 'shelter in place' are ... | 1 |
3 | 6 | NaN | NaN | 13,000 people receive #wildfires evacuation or... | 1 |
4 | 7 | NaN | NaN | Just got sent this photo from Ruby #Alaska as ... | 1 |
... | ... | ... | ... | ... | ... |
7608 | 10869 | NaN | NaN | Two giant cranes holding a bridge collapse int... | 1 |
7609 | 10870 | NaN | NaN | @aria_ahrary @TheTawniest The out of control w... | 1 |
7610 | 10871 | NaN | NaN | M1.94 [01:04 UTC]?5km S of Volcano Hawaii. htt... | 1 |
7611 | 10872 | NaN | NaN | Police investigating after an e-bike collided ... | 1 |
7612 | 10873 | NaN | NaN | The Latest: More Homes Razed by Northern Calif... | 1 |
7613 rows × 5 columns
pd_data = pandas.read_csv(dataset_dir / 'train.csv')[['text', 'target']]
pd_data
text | target | |
---|---|---|
0 | Our Deeds are the Reason of this #earthquake M... | 1 |
1 | Forest fire near La Ronge Sask. Canada | 1 |
2 | All residents asked to 'shelter in place' are ... | 1 |
3 | 13,000 people receive #wildfires evacuation or... | 1 |
4 | Just got sent this photo from Ruby #Alaska as ... | 1 |
... | ... | ... |
7608 | Two giant cranes holding a bridge collapse int... | 1 |
7609 | @aria_ahrary @TheTawniest The out of control w... | 1 |
7610 | M1.94 [01:04 UTC]?5km S of Volcano Hawaii. htt... | 1 |
7611 | Police investigating after an e-bike collided ... | 1 |
7612 | The Latest: More Homes Razed by Northern Calif... | 1 |
7613 rows × 2 columns
在使用BERT进行文本分类时,文本序列会被分段成较小的片段,每个片段的长度不能超过BERT模型的最大输入长度。BERT-base模型的最大输入长度为512个token。但是,实际上,通常不会使用整个512个token的长度,因为这会导致模型的计算和内存消耗过高,尤其是在GPU内存有限的情况下。
因此,为了在保持模型性能的同时有效利用计算资源,常见的做法是将文本序列截断或填充到一个较小的长度,通常是128或者256。在这个设置下,大多数文本序列都可以被完整地处理,而且不会导致过多的计算资源消耗。
选择128作为文本最大长度的原因可能是出于以下考虑:
大多数文本序列可以在128个token的长度内完整表示,因此不会丢失太多信息。
128是一个相对合理的长度,可以平衡模型性能和计算资源的消耗。
在实际应用中,较长的文本序列很少出现,因此选择128不会对大多数样本产生太大影响。
max_length = pd_data['text'].str.len().max()
print(max_length)
# 按ratio随机划分训练集和验证集
pd_validation_data = pd_data.sample(frac = validation_ratio)
pd_train_data = pd_data[~pd_data.index.isin(pd_validation_data.index)]
pd_train_data
"""
输出:157
"""
text | target | |
---|---|---|
0 | Our Deeds are the Reason of this #earthquake M... | 1 |
1 | Forest fire near La Ronge Sask. Canada | 1 |
2 | All residents asked to 'shelter in place' are ... | 1 |
4 | Just got sent this photo from Ruby #Alaska as ... | 1 |
5 | #RockyFire Update => California Hwy. 20 closed... | 1 |
... | ... | ... |
7607 | #stormchase Violent Record Breaking EF-5 El Re... | 1 |
7608 | Two giant cranes holding a bridge collapse int... | 1 |
7610 | M1.94 [01:04 UTC]?5km S of Volcano Hawaii. htt... | 1 |
7611 | Police investigating after an e-bike collided ... | 1 |
7612 | The Latest: More Homes Razed by Northern Calif... | 1 |
6852 rows × 2 columns
#定义数据类
class MyDataset(Dataset):def __init__(self,mode = 'train'):super(MyDataset,self).__init__()self.mode = modeif mode == 'train':self.dataset = pd_train_dataelif mode == 'validation':self.dataset = pd_validation_dataelif mode == 'test':# 如果是测试模式,则返回推文和id。拿id做target主要是方便后面写入结果。self.dataset = pandas.read_csv(dataset_dir / 'test.csv')[['text', 'id']]else:raise Exception("Unknown mode {}".format(mode))def __getitem__(self, index):# 取第index条data = self.dataset.iloc[index]# 取其推文,做个简单的数据清理source = data['text'].replace("#", "").replace("@", "")# 取对应的推文if self.mode == 'test':# 如果是test,将id做为targettarget = data['id']else:target = data['target']# 返回推文和targetreturn source, targetdef __len__(self):return len(self.dataset)
train_dataset = MyDataset('train')
validation_dataset = MyDataset('validation')
train_dataset.__getitem__(0)
"""
('Our Deeds are the Reason of this earthquake May ALLAH Forgive us all', 1)
"""
#使用分词器
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokenizer("I'm learning deep learning", return_tensors='pt')"""
tokenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]
config.json: 0%| | 0.00/570 [00:00<?, ?B/s]
vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]
tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]{'input_ids': tensor([[ 101, 1045, 1005, 1049, 4083, 2784, 4083, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1]])}
"""
下面这个collate_fn函数用于对一个batch的文本数据进行处理,将文本句子转换为tensor,并组成一个batch。下面是函数的具体功能和输入输出:
输入参数 batch:一个batch的句子,每个句子是一个元组,包含文本和目标标签,例如:[(‘推文1’, 目标1), (‘推文2’, 目标2), …]
输出:处理后的结果,包含两部分:
src:是要送给BERT模型的输入,包含两个tensor:
input_ids:经过分词和映射后的输入文本的token id序列。
attention_mask:用于指示BERT模型在进行自注意力机制时哪些部分是padding的,需要被忽略。1表示有效token,0表示padding。
target:目标标签的tensor序列,即对应每个文本的标签。
这个函数首先将输入的batch分成两个列表,一个是文本列表 text,一个是目标标签列表 target。然后使用 tokenizer 对文本进行分词、映射、padding和裁剪等预处理操作,得到模型的输入 src。最后将处理后的输入 src 和目标标签 target 组合成输出。
collate_fn函数在数据加载器每次取出一个batch的样本时被调用,用于对这个batch的样本进行预处理、转换成模型所需的格式。
def collate_fn(batch):"""将一个batch的文本句子转成tensor,并组成batch。:param batch: 一个batch的句子,例如: [('推文', target), ('推文', target), ...]:return: 处理后的结果,例如:src: {'input_ids': tensor([[ 101, ..., 102, 0, 0, ...], ...]), 'attention_mask': tensor([[1, ..., 1, 0, ...], ...])}target:[1, 1, 0, ...]"""text, target = zip(*batch)text, target = list(text), list(target)# src是要送给bert的,所以不需要特殊处理,直接用tokenizer的结果即可# padding='max_length' 不够长度的进行填充# truncation=True 长度过长的进行裁剪src = tokenizer(text, padding='max_length', max_length=text_max_length, return_tensors='pt', truncation=True)return src, torch.LongTensor(target)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)
inputs, targets = next(iter(train_loader))
print("inputs:", inputs)
print(inputs['input_ids'].shape)
print("targets:", targets)
#batch_size = 16"""
inputs: {'input_ids': tensor([[ 101, 10482, 6591, ..., 0, 0, 0],[ 101, 4911, 2474, ..., 0, 0, 0],[ 101, 5916, 6340, ..., 0, 0, 0],...,[ 101, 21318, 2571, ..., 0, 0, 0],[ 101, 20010, 21149, ..., 0, 0, 0],[ 101, 26934, 5315, ..., 0, 0, 0]]), 'token_type_ids': tensor([[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],...,[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, ..., 0, 0, 0],[1, 1, 1, ..., 0, 0, 0],[1, 1, 1, ..., 0, 0, 0],...,[1, 1, 1, ..., 0, 0, 0],[1, 1, 1, ..., 0, 0, 0],[1, 1, 1, ..., 0, 0, 0]])}
torch.Size([16, 128])
targets: tensor([0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1])"""
768是BERT模型中隐藏层的维度大小。BERT模型使用了12层或者24层的Transformer编码器,每一层的隐藏层输出的维度大小为768
nn.Linear(768, 256):将输入的维度从768降到256,这是一个线性变换(全连接层),将BERT模型输出的768维隐藏表示转换为更低维度的表示。
nn.ReLU():ReLU激活函数,用于引入非线性。在降维后的表示上应用ReLU激活函数,以增加模型的非线性能力。
nn.Linear(256, 1):将256维的表示进一步映射到一个单一的值,用于二分类问题中的概率预测。
nn.Sigmoid():Sigmoid激活函数,将输出值压缩到0到1之间,表示概率值。
因此,整个self.predictor模块的作用是将BERT模型的输出映射到一个单一的概率值,用于二分类问题的预测。
#构建模型
class TextClassificationModel(nn.Module):def __init__(self):super(TextClassificationModel, self).__init__()# 加载bert模型self.bert = AutoModel.from_pretrained("bert-base-uncased")# 最后的预测层self.predictor = nn.Sequential(nn.Linear(768, 256),nn.ReLU(),nn.Linear(256, 1),nn.Sigmoid())def forward(self, src):""":param src: 分词后的推文数据"""# 将src直接序列解包传入bert,因为bert和tokenizer是一套的,所以可以这么做。# 得到encoder的输出,用最前面[CLS]的输出作为最终线性层的输入outputs = self.bert(**src).last_hidden_state[:, 0, :]# 使用线性层来做最终的预测return self.predictor(outputs)"""last_hidden_state 的形状是 (batch_size, sequence_length, hidden_size),其中:batch_size 是当前批次中样本的数量。
sequence_length 是输入序列的长度。
hidden_size 是隐藏状态的维度,通常等于BERT模型的隐藏层大小,例如在BERT-base中是768。
"""
model = TextClassificationModel()
model = model.to(device)
model(inputs.to(device))
criteria = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=3e-5)
# 由于inputs是字典类型的,定义一个辅助函数帮助to(device)
def to_device(dict_tensors):result_tensors = {}for key, value in dict_tensors.items():result_tensors[key] = value.to(device)return result_tensors
"""
将字典中的张量转移到指定的设备(如GPU)。它接受一个字典,其中键是张量的名称,值是张量本身。
然后,它迭代字典中的每个键值对,并将值转移到设备上,最后返回一个具有相同键但值位于指定设备上的新字典
"""def validate():model.eval()total_loss = 0.total_correct = 0for inputs, targets in validation_loader:inputs, targets = to_device(inputs), targets.to(device)outputs = model(inputs)loss = criteria(outputs.view(-1), targets.float())total_loss += float(loss)correct_num = (((outputs >= 0.5).float() * 1).flatten() == targets).sum()total_correct += correct_numreturn total_correct / len(validation_dataset), total_loss / len(validation_dataset)
"""
model.safetensors: 0%| | 0.00/440M [00:00<?, ?B/s]
"""
# 首先将模型调成训练模式
model.train()# 清空一下cuda缓存
if torch.cuda.is_available():torch.cuda.empty_cache()# 定义几个变量,帮助打印loss
total_loss = 0.
# 记录步数
step = 0# 记录在验证集上最好的准确率
best_accuracy = 0# 开始训练
for epoch in range(epochs):model.train()for i, (inputs, targets) in enumerate(train_loader):# 从batch中拿到训练数据inputs, targets = to_device(inputs), targets.to(device)# 传入模型进行前向传递outputs = model(inputs)# 计算损失loss = criteria(outputs.view(-1), targets.float())loss.backward()optimizer.step()optimizer.zero_grad()total_loss += float(loss)step += 1if step % log_per_step == 0:print("Epoch {}/{}, Step: {}/{}, total loss:{:.4f}".format(epoch+1, epochs, i, len(train_loader), total_loss))total_loss = 0del inputs, targets# 一个epoch后,使用过验证集进行验证accuracy, validation_loss = validate()print("Epoch {}, accuracy: {:.4f}, validation loss: {:.4f}".format(epoch+1, accuracy, validation_loss))torch.save(model, model_dir / f"model_{epoch}.pt")# 保存最好的模型if accuracy > best_accuracy:torch.save(model, model_dir / f"model_best.pt")best_accuracy = accuracy
Epoch 1/100, Step: 49/429, total loss:27.0852
Epoch 1/100, Step: 99/429, total loss:21.9039
Epoch 1/100, Step: 149/429, total loss:22.6578
Epoch 1/100, Step: 199/429, total loss:21.1815
Epoch 1/100, Step: 249/429, total loss:20.3617
Epoch 1/100, Step: 299/429, total loss:18.9497
Epoch 1/100, Step: 349/429, total loss:20.8270
Epoch 1/100, Step: 399/429, total loss:20.0272
Epoch 1, accuracy: 0.8279, validation loss: 0.0247
Epoch 2/100, Step: 20/429, total loss:18.0542
Epoch 2/100, Step: 70/429, total loss:14.7096
Epoch 2/100, Step: 120/429, total loss:15.0193
Epoch 2/100, Step: 170/429, total loss:14.2937
Epoch 2/100, Step: 220/429, total loss:14.1752
Epoch 2/100, Step: 270/429, total loss:14.2685
Epoch 2/100, Step: 320/429, total loss:14.0682
Epoch 2/100, Step: 370/429, total loss:16.1425
Epoch 2/100, Step: 420/429, total loss:17.1818
Epoch 2, accuracy: 0.8397, validation loss: 0.0279
Epoch 3/100, Step: 41/429, total loss:8.0204
Epoch 3/100, Step: 91/429, total loss:9.5614
Epoch 3/100, Step: 141/429, total loss:9.2036
Epoch 3/100, Step: 191/429, total loss:8.9964
Epoch 3/100, Step: 241/429, total loss:10.7305
Epoch 3/100, Step: 291/429, total loss:10.5000
Epoch 3/100, Step: 341/429, total loss:11.3632
Epoch 3/100, Step: 391/429, total loss:10.3103
Epoch 3, accuracy: 0.8252, validation loss: 0.0339
Epoch 4/100, Step: 12/429, total loss:8.1302
Epoch 4/100, Step: 62/429, total loss:5.9590
Epoch 4/100, Step: 112/429, total loss:6.9333
Epoch 4/100, Step: 162/429, total loss:6.4659
Epoch 4/100, Step: 212/429, total loss:6.3636
Epoch 4/100, Step: 262/429, total loss:6.6609
Epoch 4/100, Step: 312/429, total loss:6.3064
Epoch 4/100, Step: 362/429, total loss:5.7218
Epoch 4/100, Step: 412/429, total loss:6.8676
Epoch 4, accuracy: 0.8042, validation loss: 0.0370
Epoch 5/100, Step: 33/429, total loss:4.4049
Epoch 5/100, Step: 83/429, total loss:3.0673
Epoch 5/100, Step: 133/429, total loss:4.1351
Epoch 5/100, Step: 183/429, total loss:3.8803
Epoch 5/100, Step: 233/429, total loss:3.2633
Epoch 5/100, Step: 283/429, total loss:4.6513
Epoch 5/100, Step: 333/429, total loss:4.3888
Epoch 5/100, Step: 383/429, total loss:5.1710
Epoch 5, accuracy: 0.8055, validation loss: 0.0484
model = torch.load(model_dir / f"model_best.pt")
model = model.eval()
test_dataset = MyDataset('test')
#构造测试集的dataloader。测试集是不包含target的
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)
results = []
for inputs, ids in tqdm(test_loader):outputs = model(inputs.to(device))outputs = (outputs >= 0.5).int().flatten().tolist()ids = ids.tolist()results = results + [(id, result) for result, id in zip(outputs, ids)]
with open('/kaggle/working/results.csv', 'w', encoding='utf-8') as f:f.write('id,target\n')for id, result in results:f.write(f"{id},{result}\n")
print("Finished!")"""0%| | 0/204 [00:00<?, ?it/s]Finished!
"""
提交后的结果: