全面了解机器学习

目录

一、基本认识

1. 介绍

2. 机器学习位置

二、机器学习的类型

1. 监督学习

2. 无监督学习

3. 强化学习

三、机器学习术语

1. 训练样本

2. 训练

3. 特征

4. 目标

5. 损失函数

四、机器学习流程

五、机器学习算法

1. 分类算法

2. 聚类算法

3. 关联分析

4. 回归分析

① 线性回归

② 逻辑回归

③ 多项式回归

④ 岭回归

⑤  LASSO 回归

5. 深度学习


一、基本认识

1. 介绍

        在当今的 科技时代,大量结构化 和 非结构化数据是我们的 丰富资源。机器学习在 20世纪 下半叶演变为 人工智能(Al)的 一个分支,它 通过 自学习算法 从数据中 获得知识来 进行预测。机器学习 并不需要 事先对 大量数据进行 人工分析,然后 提取规则 并建立模型,而是 提供了一种更为 有效的方法 来捕获 数据中的 知识,逐步提高 预测模型的性能,以 完成数据驱动的决策。

2. 机器学习位置

        机器学习是 人工智能的一个分支,作为 人工智能的核心技术和实现手段,通过机器学习的方法解决人工智能面对的问题。机器学习是通过一些让计算机可以自动 “学习” 的算法,从数据中分析获得规律,然后利用 规律对新样本 进行预测。

        从本质上看,数据科学 的 目标是 通过处理 各种数据促进 人们的决策,机器学习 的主要任务 使机器模仿 人类的学习,从 而获得知识。而 人工智能借助机器学习 和 推理最终是形成具体的 智能行为。

二、机器学习的类型

1. 监督学习

        监督学习的主要目标是 从有标签的训练数据中学习模型,以便对未知或未来的 数据做出预测。其中,模型的输入是 某一样本的特征,函数的 输出是这一样本对应的标签。这里的 “监督” 一词指的是 已经知道训练样本(输入数据)中期待的输出信号(标签)

2. 无监督学习

        无监督学习 又称为 非监督式学习,它的输入样本并不需要标记,而是 自动从样本中 学习特征实现预测。用无监督学习技术,可以 在没有 己知结果变量 或 奖励函数的指导下,探索 数据结构来提取有意义的信息。

3. 强化学习

        强化学习是 通过观察来学习 做成什么样 的动作。每个动作 都会对环境 有所影响,学习对象根据观察到的 周围环境的反馈来 做出判断。强化学习强调 如何基于环境而行动,以取得最大化的预期利益。强化学习的 反馈并非标定过的 正确标签 或数值,而是 奖励函数对行动度量的结果。通过探索性的试错 或 深思熟虑的规划 来最大化 这种奖励。

        强化学习 有许多不同的子类。然而,一般模式是 强化学习智能体 试图通过 与环境的一系列 交互来 最大化奖励。

三、机器学习术语

1. 训练样本

        表中的行,代表数据集的观察、记录、个体或者样本(在多数情况下,样本指训练样本集)。

2. 训练

        模型拟合,对参数型模型而言,类似参数估计。

3. 特征

        缩写为x,指数据表或矩阵的列。与预测因子、变量、输入、属性或协变量同义。

4. 目标

        缩写为y,与结果、输出、响应变量、因变量、分类标签和真值同义。

5. 损失函数

        经常与代价函数 同义。有时也被 称为误差函数。在有些文献中,术语损失 指的是对 单个数据点进行测量的 损失,而代价是 对整个数据集进行测量(平均或者求和)的损失。

四、机器学习流程

        ① 在对原始数据进行数据探索后,可能发现不少问题,如缺失数据、数据不规范、数据分布不均衡、数据异常、数据冗余等。这些问题都会影响数据质量。为此,需要 对数据进行预处理归一化、离散化、缺失值处理、去除共线性等,是机器学习的常用 预处理方法。

        ② 特征选择是否合适,往往会直接影响 模型的结果,对于 好的特征,使用 简单的算法也能得出良好、稳定的结果。特征选择 时可 应用特征 有效性分析技术,如相关系数、卡方检验、平均互信息、条件熵、后验概率和逻辑回归权重等方法

        ③ 训练模型 前,一般会把数据集分为训练集和测试集,或对训练集再细分为 训练集和验证集,从而对模型的 泛化能力 进行评估。模型本身 并没有优劣。在模型选择时,一般不存在 对任何情况都表现很好的 算法,这又称为 “没有免费的午餐” 原则。因此在实际选择时,一般会用 几种不同方法 来进行模型训练,然后比较 它们的性能,从中选择 最优的一个。不同的模型 使用不同的 性能 衡量指标。

        ④ 使用 训练数据构建模型后,需使用 测试数据 对模型进行测试和评估,测试模型 对新数据的泛化能力。如果测试结果 不理想,则分析原因并 进行模型优化。如果 出现 过拟合,特别是 在回归类问题 中,则可以 考虑正则化方法来 降低模型的 泛化误差。过拟合、欠拟合判断是 模型诊断中 重要的一步,常见的 方法有交叉验证、绘制学习曲线等。过拟合的 基本调优思路 是增加数据量,降低模型复杂度。欠拟合的基本调优思路 是 提高特征数量 和质量,增加模型 复杂度。

五、机器学习算法

        根据机器学习的 任务分类,可以分为回归、分类、聚类三大常见机器学习任务。

1. 分类算法

        分类算法是 应用分类规则对记录进行目标映射,将其 划分到不同的分类中,构建具有 泛化能力的 算法模型,即 构建映射规则来 预测未知样本的类别。

        分类算法包括 预测 和 描述 两种。

     ① 预测:经过 训练集学习的 预测模型 在遇到 未知记录时,应用规则 对其进行类别 划分。

     ② 描述:主要是 对现有数据 集中特征 进行解释并进行 区分,例如 对动植物的各项特征进行描述,并进行标记分类,由这些 特征来决定其属于哪一类目。

        主要的分类算法包括 决策树、支持向量机(Support Vector Machine,SVM)、最近邻(K-Nearest Neighbor,KNN) 算法、贝叶斯网络 (BayesNetwork) 和 神经网络等。

2. 聚类算法

        聚类按照 数据的 内在结构特征 进行聚集 形成簇群,从而 实现数据的分离。聚类与分类 的主要区别 是其 并不关心数据是什么类别,而是把相似的数据聚集 起来形成某一类簇 

        在聚类的过程中,首先 选择有效特征 构成向量,然后按照 欧氏距离或其他距离函数 进行相似度计算,并划分聚类,通过对聚类结果 进行评估,逐渐迭代生成 新的聚类。

        聚类方法可分为 基于层次的聚类(Hierarchical Method)、基于划分的聚类 (Partitioning Method,PAM)、基于密度的聚类、基于约束的聚类、基于网络的聚类等。

     ① 基于层次的聚类:是 将数据集分为 不同的层次, 并 采用分解 或 合并的 操作进行聚类,主要包括 BIRCH (Balanced lterative Reducing andClustering using Hierarchies)、 CURE (Clustering UsingRepresentatives) 等。

     ② 基于划分的聚类:是 将数据集 划分为 k个簇,并对其中的 样本计算距离 以获得 假设簇 中心点,然后 以簇的中心点 重新迭代计算 新的中心点,直到 k个簇 的中心点 收敛为止。基于划分的聚类有 k均值 等。

     ③ 基于密度的聚类:是 根据样本的 密度不断增长 聚类,最终 形成一组 “密集连接” 的点集,其 核心思想是 只要数据的密度大于 阈值 就将其合并成 一个簇,可以 过滤噪声,聚类结果可以是任意形状,不必为 凸形。基于密度的聚类方法 主要包括 DBSCAN (Density -Based Spatial Clustering ofApplication with Noise)、 OPTICS (Ordering Points To Identify theClustering Structure) 等。

3. 关联分析

        关联分析 (Associative Analysis)是 通过对数据集中 某些项目同时出现的 概率来发现 它们之问的关联关系,其 典型的应用是购物篮分析,通过 分析购物篮中不同商品之间的 关联,分析消费者的 购买行为习惯,从而 制定相应的 营销策略,为商品促销、产品定价、位置摆放等提供支持,并且可用于对 不同消费者群体的划分。

        关联分析 主要包括 Apriori算法 和 FP-growth算法

4. 回归分析

        回归分析 是一种 研究自变量和因变量之间关系的 预测模型,用于 分析当自变量发生变化时因变量的变化值,要求 自变量相互独立。

① 线性回归

        应用线性回归 进行分析时要求自变量是连续型,线性回归用直线(回归线)建立因变量和一个或多个 自变量之间的关系。

② 逻辑回归

        逻辑(Logistic)回归是 数据分析中的 常用算法,其输出的是 概率估算值,将此值用 Sigmoid 函数进行映射到 [0,1] 区间,即可用来 实现样本分类。逻辑回归 对样本量有一定要求,在样本量较少时,概率估计的 误差较大。

③ 多项式回归

        在回归分析 中有时会 遇到线性回归的 直线拟合 效果不佳,如果发现 散点图中数据点呈多项式曲线时,可以考虑使用 多项式回归来分析。使用 多项式回归可以降低模型 的误差,但是 如果处理不当易造成 模型过拟合,在 回归分析 完成之后 需要 对结果 进行分析,并 将结果可视化 以查看其拟合程度。

④ 岭回归

        岭回归在共线性数据分析中应用较多,也称为脊回归,它是一种有偏估计的回归方法,是在最小二乘估计法的 基础上做了改进,通过 舍弃最小二乘法的无偏性,使回归 系数更加稳定 和 稳健。其中 R方值 会稍低于 普通回归分析方法,但回归系数更加显著,主要用于 变量间存在 共线性和数据点较少时。

⑤  LASSO 回归

        LASSO 回归的 特点 与岭回归 类似,在拟合模型 的同时 进行变量筛选 和 复杂度调整。变量筛选是逐渐 把变量放入模型 从而得到 更好的自变量组合。复杂度调整 是通过参数调整 来控制模型的 复杂度,例如 减少自变量的数量等,从而避免 过拟合。LASSO 回归也是 擅长处理 多重共线性或存在一定 噪声和冗余的数据,可以支持连续型因变量、二元、多元离散变量的分析。

5. 深度学习

        深度学习方法 是通过使用多个隐藏层和大量数据来 学习特征,从而 提升分类 或 预测的准确性,与传统的神经网络相比,不仅 在层数上较多,而且采用了逐层训练的机制来训练整个网络,以防出现梯度扩散。

        深度学习包括受限 玻尔兹曼机(RBM)、深度信念网(DBN)、卷积神经网络(CNN)、层叠自动编码器(SAE)、深度神经网络(DNN)、循环神经网络(RNN)、对抗神经网络(GAN)以及 各种变种网络 结构。

        这些 深度神经网络 都可以 对训练集数据 进行特征提取 和 模式识别,然后 应用于样本的分类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/39234.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt入门教程(一):Qt使用的基本知识

目录 Qt简介 新建项目 构建目录和工作目录 构建目录 工作目录 项目结构 项目配置文件 .pro 用户文件 .user 主文件 main.cpp 头文件 dialog.h 源文件 dialog.cpp 帮助文档 三种查询文档的方式: 文档的重点位置:​编辑 调试信息 Qt简介 Qt…

java 代码块

Java中的代码块主要有三种类型:普通代码块、静态代码块、构造代码块。它们的用途和执行时机各不相同。 普通代码块:在方法内部定义,使用一对大括号{}包围的代码片段。它的作用域限定在大括号内,每当程序执行到该代码块时就会执行其…

全平台7合一自定义小程序源码系统功能强大 前后端分离 带完整的安装代码包以及搭建教程

系统概述 这款全平台 7 合一自定义小程序源码系统是专为满足各种业务需求而设计的。它整合了多种功能,能够在不同平台上运行,为用户提供了全方位的体验。无论你是企业主、开发者还是创业者,这款系统都能为你提供强大的支持。 代码示例 系统…

crewAI实践(包含memory的启用)--AiRusumeGenerator

crewAI实践--AiRusumeGenerator 什么是crewAIAiRusumeGenerator功能效果展示开发背景开发步骤1. 首先得学习下这款框架原理大概用法能够用来做什么? 2. 安装crewAI以及使用概述3. 写代码Agents.pyTasks.pymian.py关于task中引入的自定义工具这里不再赘述 什么是crew…

C# 截取图片

C#从图中截取部分图片 代码实现截图_c# net core webapi如何通过图片大小区域范围进行截图-CSDN博客

V Rising夜族崛起的管理员指令大全

使用方法: 如果没有启用控制台需要先启用控制台 打开游戏点击选项(如果在游戏内点击ESC即可),在通用页面找到启用控制台,勾选右边的方框启用 在游戏内点击键盘ESC下方的波浪键(~)使用控制台 指…

Vue的服务器代理如何配置

在Vue项目中配置服务器代理,主要是为了解决开发过程中的跨域问题,以及方便地将前端请求转发到后端服务器。以下是在Vue项目中配置服务器代理的详细步骤和注意事项,主要基于Vue CLI进行说明: 一、配置步骤 1. 确认项目环境 确保…

构建LangChain应用程序的示例代码:49、如何使用 OpenAI 的 GPT-4 和 LangChain 库实现多模态问答系统

! pip install "openai>1" "langchain>0.0.331rc2" matplotlib pillow加载图像 我们将图像编码为 base64 字符串,如 OpenAI GPT-4V 文档中所述。 import base64 import io import osimport numpy as np from IPython.display import HT…

PDF一键转PPT文件!这2个AI工具值得推荐,办公必备!

PDF转换为PPT文件,是职场上非常常见的需求,过去想要把PDF文件转换为PPT,得借助各种文件转换工具,但在如今AI技术主导的大背景下,我们在选用工具时有了更多的选择,最明显的就是基于AI技术打造的AI格式转换工…

《昇思25天学习打卡营第21天 | 昇思MindSporePix2Pix实现图像转换》

21天 本节学习了通过Pix2Pix实现图像转换。 Pix2Pix是基于条件生成对抗网络(cGAN)实现的一种深度学习图像转换模型。可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。Pix2Pix是将cGAN应用于有监督的图…

gin框架 gin.Context中的Abort方法使用注意事项 - gin框架中立刻中断当前请求的方法

gin框架上下文中的Abort序列方法(Abort,AbortWithStatus, AbortWithStatusJSON,AbortWithError)他们都不会立刻终止当前的请求,在中间件中调用Abort方法后中间件中的后续的代码会被继续执行,但是…

【Unity 人性动画的复用性】

Unity的动画系统,通常称为Mecanim,提供了强大的动画复用功能,特别是针对人型动画的重定向技术。这种技术允许开发者将一组动画应用到不同的角色模型上,而不需要为每个模型单独制作动画。这通过在模型的骨骼结构之间建立对应关系来…

大数据面试题之Flink(4)

Flink广播流 Flink实时topN 在实习中一般都怎么用Flink Savepoint知道是什么吗 为什么用Flink不用别的微批考虑过吗 解释一下啥叫背压 Flink分布式快照 Flink SQL解析过程 Flink on YARN模式 Flink如何保证数据不丢失 Flink广播流 Apache Flink 中的广播流&…

系统安全与应用

目录 1. 系统账户清理 2. 密码安全性控制 2.1 密码复杂性 2.2 密码时限 3 命令历史查看限制 4. 终端自动注销 5. su权限以及sudo提权 5.1 su权限 5.2 sudo提权 6. 限制更改GRUB引导 7. 网络端口扫描 那天不知道为什么,心血来潮看了一下passwd配置文件&am…

使用container_of宏进行类型转换

使用container_of宏进行类型转换 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!在C语言编程中,经常会遇到需要在数据结构中找到结构体成员所在的结…

【2024LLM应用开发】使用Chroma DB实现语义搜索的向量数据库系统

向量数据库的建立、使用方式、原理及应用: 目录 向量数据库的建立: 使用方式: 代码原理: 整体结构: 为什么使用向量数据库: 相关应用: 原理深入解析: 向量数据库的建立: 向量数据库的核心是…

高阶面试-netty部分

介绍下netty Netty 是一个基于 Java 的异步事件驱动的网络应用框架,提供了用于快速开发高性能、高可扩展性的协议服务器和客户端的工具 BIO、NIO、AIO 的区别是什么 BIO blocking io,同步阻塞IO,比较简单,为每个请求分配一个线…

VSCode中常用的快捷键

通用操作快捷键 显示命令面板:Ctrl Shift P or F1,用于快速访问VSCode的各种命令。 快速打开:Ctrl P,可以快速打开文件、跳转到某个行号或搜索项目内容。 新建窗口/实例:Ctrl Shift N,用于打开一个新的…

三维家:SaaS的IT规模化降本之道|OceanBase 《DB大咖说》(十一)

OceanBase《DB大咖说》第 11 期,我们邀请到了三维家的技术总监庄建超,来分享他对数据库技术的理解,以及典型 SaaS 场景在数据库如何实现规模化降本的经验与体会。 庄建超,身为三维家的技术总监,独挑大梁,负…

grpc学习golang版( 八、双向流示例 )

系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 第五章 多proto文件示例 第六章 服务器流式传输 第七章 客户端流式传输 第八章 双向流示例 文章目录 一、前言二、定义proto文件三、编写server服务端四、编写client客…