对应HR-LR数据对 x , y x,y x,y,其中 y y y是对 x x x进行degradation得到的,之后分别输入到DAPE模型中得到 f x r e p , f x l o g i t s , f y r e p , f y l o g i t s f_x^{rep},f_x^{logits},f_y^{rep},f_y^{logits} fxrep,fxlogits,fyrep,fylogits,DAPE模型是从tag预训练模型初始化而来,最后的损失是 L D A P E = L r ( f y r e f , f x r e p ) + λ L l ( f y l o g i t s , f x l o g i t s ) L_{DAPE}=L_r(f_y^{ref},f_x^{rep}) + \lambda L_l(f_y^{logits},f_x^{logits}) LDAPE=Lr(fyref,fxrep)+λLl(fylogits,fxlogits), L r L_r Lr是MSE损失, L l L_l Ll是cross entropy损失,两部分损失中logits部分损失受到模型thresh值设定的影响,所以使用representation部分进行补充;
public static String toString(Object o) // 获取对象的字符串表现形式 public static boolean equals(Object a, Object b) // 比较两个对象是否相等 public static boolean isNull(Object obj) // 判断对象是否为null pu…