文心一言 VS 讯飞星火 VS chatgpt (287)-- 算法导论21.2 6题

六、假设对 UNION 过程做一个简单的改动,在采用链表表示中拿掉让集合对象的 tail 指针总指向每个表的最后一个对象的要求。无论是使用还是不使用加权合并启发式策略,这个修改不应该改变 UNION 过程的渐近运行时间。(提示:而不是把一个表链接到另一个表后面,将它们拼接在一起。)如果要写代码,请用go语言。

文心一言:

在并查集(Union-Find)数据结构中,UNION 过程通常用于合并两个集合。传统的 UNION 操作会维护一个指向每个集合最后一个元素的 tail 指针,以便于在合并时快速找到最后一个元素并修改其指针。但是,如果我们不强制 tail 指针总是指向最后一个元素,我们仍然可以通过其他方式有效地合并集合,而不会改变渐近运行时间。

以下是一个使用 Go 语言实现的并查集结构,其中不包括强制 tail 指针指向最后一个元素的逻辑。我们将使用父指针(parent pointers)的方法来表示集合,并使用一个额外的数组(或映射)来存储集合的代表元素(通常是根节点)。

package mainimport ("fmt"
)type UnionFind struct {parent []intrank   []int // 可以用来优化加权合并启发式策略// 不需要 tail 指针,因为我们通过遍历或递归找到集合的代表元素
}func NewUnionFind(n int) *UnionFind {return &UnionFind{parent: make([]int, n),rank:   make([]int, n),}
}// 初始化每个元素的父节点为其自身,代表它是集合的代表元素
func (uf *UnionFind) Initialize(n int) {for i := 0; i < n; i++ {uf.parent[i] = iuf.rank[i] = 1 // 如果使用加权合并启发式策略}
}// 查找元素 x 的根节点(集合的代表元素)
func (uf *UnionFind) Find(x int) int {if uf.parent[x] != x {uf.parent[x] = uf.Find(uf.parent[x]) // 路径压缩优化}return uf.parent[x]
}// 合并两个集合,包含元素 x 和 y
func (uf *UnionFind) Union(x, y int) {rootX := uf.Find(x)rootY := uf.Find(y)if rootX == rootY {return // 已经是同一个集合}// 使用加权合并启发式策略(如果需要)if uf.rank[rootX] > uf.rank[rootY] {uf.parent[rootY] = rootX} else if uf.rank[rootX] < uf.rank[rootY] {uf.parent[rootX] = rootY} else {uf.parent[rootY] = rootXuf.rank[rootX]++ // 打破平级关系}
}func main() {uf := NewUnionFind(10)uf.Initialize(10)uf.Union(1, 2)uf.Union(3, 4)uf.Union(1, 5)uf.Union(5, 6)uf.Union(4, 9)uf.Union(5, 9)// 打印集合的代表元素(例如,通过遍历所有元素并打印它们的根)for i := 0; i < 10; i++ {fmt.Printf("Element %d belongs to set with representative %d\n", i, uf.Find(i))}
}

在这个实现中,我们没有使用 tail 指针,而是依赖于 Find 函数来找到集合的代表元素。我们使用路径压缩技术来优化 Find 函数的性能。此外,如果使用了加权合并启发式策略,我们还维护了一个 rank 数组来记录每个集合的大小(或秩),以便于在合并时决定哪个集合应该成为另一个集合的父集合。

注意,尽管没有 tail 指针,但渐近运行时间对于 UNION 操作仍然是线性的(在采用路径压缩优化时),因为每个元素在合并过程中最多被压缩一次。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

讯飞星火:

在Go语言中,我们可以使用切片(slice)来代替链表。切片是一种动态的、灵活的、强大的序列数据结构,可以看作是数组的一种扩展。切片和数组非常相似,但是切片的长度可以在运行时改变,而数组的长度是固定的。

以下是一个简单的示例,展示了如何使用Go语言的切片来实现集合的并集操作:

package mainimport "fmt"func union(s1, s2 []int) []int {m := make(map[int]bool)for _, v := range s1 {m[v] = true}for _, v := range s2 {m[v] = true}result := make([]int, 0, len(m))for k := range m {result = append(result, k)}return result
}func main() {s1 := []int{1, 2, 3, 4, 5}s2 := []int{4, 5, 6, 7, 8}fmt.Println(union(s1, s2)) // 输出: [1 2 3 4 5 6 7 8]
}

在这个示例中,我们首先创建了一个映射(map),然后遍历两个切片,将每个元素添加到映射中。由于映射的键是唯一的,所以重复的元素只会被添加一次。最后,我们创建了一个新的切片,包含了映射的所有键,这就是我们的并集结果。

360智脑:

在原本的 UNION 过程中,尾部指针(tail pointer)用于快速访问每个集合的最后一个元素,以便在合并集合时能够直接连接后一个集合。如果我们移除这个要求,那么在合并集合时,我们需要遍历整个前一个集合以找到最后一个元素,这会增加合并操作的时间复杂度。

然而,题目指出我们不需要改变 UNION 过程的渐近运行时间。这意味着尽管我们移除了 tail 指针,但在实现上我们仍然需要保证合并操作的时间复杂度不变。

下面是一种可能的实现方式:

type UnionFind struct {size int // 集合大小root []int // 根节点数组
}func NewUnionFind(n int) *UnionFind {return &UnionFind{size: n, root: make([]int, n)}
}// 查找操作,返回根节点索引
func (uf *UnionFind) Find(x int) int {if uf.root[x] != x {uf.root[x] = uf.Find(uf.root[x])}return uf.root[x]
}// 合并操作,不再使用tail指针,而是遍历前面的集合来找到最后一个节点
func (uf *UnionFind) Union(x, y int) {// 获取两个集合的根节点rootX := uf.Find(x)rootY := uf.Find(y)// 如果两个节点已经属于同一个集合,则无需任何操作if rootX == rootY {return}// 将根节点值较小的集合合并到值较大的集合中if uf.size[rootX] < uf.size[rootY] {uf.root[rootX] = rootYuf.size[rootY] += uf.size[rootX]} else {uf.root[rootY] = rootXuf.size[rootX] += uf.size[rootY]}
}

在这个例子中,root 数组用来存储每个元素的根节点,而 size 用来记录每个集合的大小。Find 函数用于查找给定元素的集合根节点,而 Union 函数执行合并操作。

请注意,上述代码中的 sizeroot 都是类成员变量,因此在实际应用中,你需要确保对这些变量的访问是同步安全的(例如通过加锁或其他并发控制机制),除非你在单线程环境中使用该数据结构。此外,为了简化示例,这里没有实现权重平衡策略。在实际使用中,你可能需要考虑使用某种权重平衡策略来改善性能。

智谱清言:

如果我们要修改 UNION 过程,在不改变其渐近运行时间的前提下去掉让集合对象的 tail 指针总指向每个表的最后一个对象的要求,我们可以采用一种不同的链接方式。在这种方式中,我们不需要维持每个集合的尾部指针,而是可以简单地将两个链表的头节点连接起来。以下是一个使用 Go 语言实现的示例:

package main
import ("fmt"
)
// ListNode 链表节点结构
type ListNode struct {Value    interface{}Next     *ListNodePrev     *ListNode
}
// Union 实现并集操作,将 list2 合并到 list1 中
func Union(list1, list2 *ListNode) *ListNode {if list1 == nil {return list2}if list2 == nil {return list1}// 找到 list1 和 list2 的尾部tail1 := list1for tail1.Next != nil {tail1 = tail1.Next}tail2 := list2for tail2.Next != nil {tail2 = tail2.Next}// 将 list2 的尾部连接到 list1 的尾部tail1.Next = tail2tail2.Prev = tail1return list1
}
// 打印链表函数
func printList(l *ListNode) {current := lfor current != nil {fmt.Println(current.Value)current = current.Next}
}
func main() {// 创建链表 1list1 := &ListNode{Value: 1, Next: nil, Prev: nil}list1.Next = &ListNode{Value: 2, Next: nil, Prev: list1}list1.Next.Next = &ListNode{Value: 3, Next: nil, Prev: list1.Next}// 创建链表 2list2 := &ListNode{Value: 4, Next: nil, Prev: nil}list2.Next = &ListNode{Value: 5, Next: nil, Prev: list2}// 合并链表unionedList := Union(list1, list2)// 打印合并后的链表printList(unionedList)
}

在这个实现中,我们不再关心每个链表的尾部指针,而是在合并时直接将第二个链表的尾部连接到第一个链表的尾部。这样做不会改变 UNION 过程的渐近运行时间,因为我们仍然只遍历了每个链表一次。

需要注意的是,这个实现假设链表节点中包含了 Prev 指针,这样我们才能将 list2 的尾部连接到 list1 的尾部。如果链表节点中没有 Prev 指针,我们需要另外一种方法来连接这两个链表的尾部。

天工:

在Go语言中,我们通常使用切片(slice)或者自定义的链表结构体来实现链表。在这个问题中,我们将创建一个简单的链表结构体,并展示如何在不使用尾指针的情况下执行UNION操作。

首先,我们需要定义一个链表节点结构体:

type Node struct {Value intNext  *Node
}

然后,我们可以创建一个函数来合并两个链表,而不使用尾指针。这里的关键是遍历第一个链表,将第二个链表的节点插入到第一个链表的每个节点之后:

func Union(list1 *Node, list2 *Node) *Node {current := list1for current != nil && list2 != nil {next := current.Nextcurrent.Next = list2list2 = list2.Nextcurrent = current.Nextcurrent.Next = nextif next == nil {break}current = next}return list1
}

在这个函数中,current变量跟踪第一个链表中的当前节点,而next变量保存current的下一个节点。我们首先将list2的第一个节点插入到current之后,然后将list2移动到下一个节点,重复这个过程直到其中一个链表被完全处理。

由于我们没有使用尾指针,我们不需要额外的空间来存储它,这使得我们的代码更加简洁。然而,这种合并操作的时间复杂度仍然是O(n),其中n是第一个链表的长度,因为我们最多遍历第一个链表一次。

需要注意的是,这种方法可能会破坏原始链表的结构,因为我们在原地将第二个链表插入到第一个链表中。如果你需要保持原始链表不变,你可能需要复制节点或者创建新的节点。

最后,为了完整性,我们可以添加一个函数来打印链表的值:

func PrintList(head *Node) {current := headfor current != nil {fmt.Printf("%d -> ", current.Value)current = current.Next}fmt.Println("nil")
}

通过这种方式,我们可以在不使用尾指针的情况下执行UNION操作,同时保持渐近运行时间不变。

灵小智:

对于这个问题,可以通过将两个链表拼接在一起来实现 UNION 过程的简单修改,而不是将一个表链接到另一个表的末尾。这样的修改不会改变 UNION 过程的渐近运行时间。

以下是一个示例的Go语言代码,展示了如何实现这种修改:

package mainimport "fmt"type Node struct {Value intNext  *Node
}func Union(list1, list2 *Node) *Node {if list1 == nil {return list2}if list2 == nil {return list1}// 找到第一个链表的最后一个节点current := list1for current.Next != nil {current = current.Next}// 将第二个链表连接到第一个链表的末尾current.Next = list2return list1
}func main() {// 创建第一个链表: 1 -> 2 -> 3node1 := &Node{Value: 1}node2 := &Node{Value: 2}node3 := &Node{Value: 3}node1.Next = node2node2.Next = node3// 创建第二个链表: 4 -> 5node4 := &Node{Value: 4}node5 := &Node{Value: 5}node4.Next = node5// 调用Union函数将两个链表合并result := Union(node1, node4)// 打印合并后的链表current := resultfor current != nil {fmt.Print(current.Value, " ")current = current.Next}
}

这段代码演示了如何将两个链表拼接在一起,而不改变UNION过程的渐近运行时间。

chatgpt:

在使用链表表示进行 UNION 操作时,如果移除了让集合对象的 tail 指针总指向每个表的最后一个对象的要求,并且采用拼接方式而不是链接到末尾方式,这样的修改确实不会改变 UNION 过程的渐近运行时间。

下面是使用 Go 语言实现这个修改后的简单代码示例:

package mainimport ("fmt"
)type Node struct {Value intNext  *Node
}type Set struct {Head *Node
}func MakeSet(x int) Set {return Set{Head: &Node{Value: x,Next:  nil,},}
}func FindSet(x int, sets []Set) int {for i := range sets {node := sets[i].Headfor node != nil {if node.Value == x {return i // 返回所属集合索引}node = node.Next}}return -1 // 找不到对应元素返回 -1 表示错误
}func Union(x, y int, sets []Set) []Set {xIndex := FindSet(x, sets)yIndex := FindSet(y, sets)if xIndex != yIndex { // x 和 y 不在同一集合中才需要合并// 将两个集合拼接在一起,将y所在集合所有元素添加到x所在集合中即可if sets[xIndex].Head == nil { // 如果x所在集合为空,则直接将y所在集合赋给xsets[xIndex].Head = sets[yIndex].Head} else {// 找到x所在集合的最后一个节点node := sets[xIndex].Headfor node.Next != nil {node = node.Next}// 将y所在集合添加到x所在集合的末尾node.Next = sets[yIndex].Head}// 删除y所在的集合sets = append(sets[:yIndex], sets[yIndex+1:]...)}return sets
}func main() {set1 := MakeSet(1)set2 := MakeSet(2)set3 := MakeSet(3)sets := []Set{set1, set2, set3}fmt.Println("Before Union:")for i, set := range sets {node := set.Headfmt.Printf("Set %d: ", i+1)for node != nil {fmt.Printf("%d ", node.Value)node = node.Next}fmt.Println()}unionSets := Union(2, 3, sets)fmt.Println("\nAfter Union:")for i, set := range unionSets {if set.Head == nil { // 集合为空时跳过打印操作,避免错误输出 nil 值continue }node := set.Headfmt.Printf("Set %d: ", i+1)for node != nil {fmt.Printf("%d ", node.Value)node = node.Next}fmt.Println()}
}

这段代码演示了拼接方式进行 UNION 操作,不改变渐近运行时间。

混元:

首先,我们需要理解题目中的 UNION 过程,即合并两个有序链表的过程。在这个过程中,我们通常会将一个链表的元素依次添加到另一个链表的末尾,从而得到一个新的有序链表。为了达到这个目的,我们通常需要维护一个尾指针(tail),以便快速定位到当前链表的末尾并插入新元素。

题目要求我们在不使用尾指针的情况下实现 UNION 过程,并且要求这个改动不影响 UNION 过程的渐近运行时间。这意味着我们需要找到一种方法,可以在不依赖尾指针的情况下高效地合并两个链表。

我们可以采用双指针的方法来实现这一点。具体来说,我们可以同时遍历两个链表,比较它们的元素大小,并将较小的元素添加到新链表中。然后移动较小元素所在链表的指针以及新链表的指针。这样,我们就可以在不使用尾指针的情况下完成链表的合并。

以下是使用 Go 语言实现的代码:

package mainimport ("fmt"
)type ListNode struct {Val  intNext *ListNode
}func unionLists(l1, l2 *ListNode) *ListNode {dummy := &ListNode{} // 创建一个哑节点作为新链表的头节点cur := dummy         // 使用 cur 指针跟踪新链表的末尾for l1 != nil && l2 != nil {if l1.Val < l2.Val {cur.Next = l1l1 = l1.Next} else {cur.Next = l2l2 = l2.Next}cur = cur.Next}// 如果其中一个链表已经遍历完,将另一个链表剩余部分直接添加到新链表的末尾if l1 != nil {cur.Next = l1} else {cur.Next = l2}return dummy.Next
}func main() {l1 := &ListNode{Val: 1, Next: &ListNode{Val: 3, Next: &ListNode{Val: 5}}}l2 := &ListNode{Val: 2, Next: &ListNode{Val: 4, Next: &ListNode{Val: 6}}}result := unionLists(l1, l2)for result != nil {fmt.Print(result.Val, " -> ")result = result.Next}
}

这段代码定义了一个名为 unionLists 的函数,它接受两个有序链表 l1l2 作为输入,并返回一个新的有序链表。在这个函数中,我们使用了双指针的方法来合并两个链表,而不依赖于尾指针。最后,我们在 main 函数中测试了这个函数的功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/32584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常见数字化转型方案撰写的思维模式

通过这一段时间的学习和倾听,结合DAMA数据管理知识体系学习与项目实践,对大部分数据治理类项目、信息化建设和数字化转型项目的思维模式做了一些总结梳理,具体有如下四种,供参考。 一、方法1:结合环境六边形法 1.要点题,弄清楚问题是什么 2.目标原则有哪些,补充哪些 3.…

如何使用代理ip上网移动转电信

在一些特定的工作场景中&#xff0c;比如跨网办公、数据分析等&#xff0c;我们常常需要将网络IP从一种类型转换到另一种类型。如需将移动网络转电信IP代理。那么&#xff0c;如何使用代理IP上网移动转电信呢&#xff1f;接下来&#xff0c;将为您揭示一个便捷的方法&#xff0…

【Linux】系统文件IO·文件描述符fd

前言 C语言文件接口 C 语言读写文件 1.C语言写入文件 2.C语言读取文件 stdin/stdout/stderr 系统文件IO 文件描述符fd&#xff1a; 文件描述符分配规则&#xff1a; 文件描述符fd&#xff1a; 前言 我们早在C语言中学习关于如何用代码来管理文件&#xff0c;比如文件的…

《Fundamentals of Power Electronics》——绕组导体中的涡流

绕组导体中的涡流也会导致功率损耗。这可能导致铜耗大大超过上述公式预测的值。特殊的导体涡流机制被称为集肤效应和紧邻效应。这些机制在多层绕组的大电流导体中最为明显&#xff0c;特别是在高频变换器中。 下图说明了一个简单变压器绕组中的邻近效应。

微软TTS最新模型,发布9种更真实的AI语音

很高兴与大家分享 Azure AI 语音翻译产品套件的两个重大更新&#xff1a; 视频翻译和增强的实时语音翻译 API。 视频翻译&#xff08;批量&#xff09; 今天&#xff0c;我们宣布推出视频翻译预览版&#xff0c;这是一项突破性的服务&#xff0c;旨在改变企业本地化视频内容…

更改ip后还被封是ip质量的原因吗?

不同的代理IP的质量相同&#xff0c;一般来说可以根据以下几个因素来进行判断&#xff1a; 1.可用率 可用率就是提取的这些代理IP中可以正常使用的比率。假如我们无法使用某个代理IP请求目标网站或者请求超时&#xff0c;那么就代表这个代理不可用&#xff0c;一般来说免费代…

mysql学习——SQL中的DQL和DCL

SQL中的DQL和DCL DQL基本查询条件查询聚合函数分组查询排序查询分页查询 DCL管理用户权限控制 学习黑马MySQL课程&#xff0c;记录笔记&#xff0c;用于复习。 DQL DQL英文全称是Data Query Language(数据查询语言)&#xff0c;数据查询语言&#xff0c;用来查询数据库中表的记…

Flowable更改默认数据库H2到Mysql数据库

Flowable更改默认数据库H2到Mysql数据库 1、下载flowable安装包&#xff0c;从官方下载&#xff0c;下载后解压缩 2、将flowable-ui.war包拷贝到tomcat里面的webapps目录&#xff0c;tomcat的安装在此就不熬术了。 3、此时启动tomcat&#xff0c;flowable-ui会使用默认的H2…

碳+绿证如何能源匹配?考虑碳交易和绿证交易制度的电力批发市场能源优化程序代码!

前言 近年来&#xff0c;面对日益受到全社会关注的气候变化问题&#xff0c;国外尤其是欧美等发达国家和地区针对电力行业制定了一系列碳减排组合机制。其中&#xff0c;碳排放权交易&#xff08;以下简称“碳交易”&#xff09;和绿色电力证书交易&#xff08;以下简称“绿证…

【Docker】Docker简介_运行原理

1、简介 1.1基本概念 容器&#xff1a;容器是Docker的基本部署单元。它是一个轻量级的、独立的运行时环境&#xff0c;包含应用程序及其相关依赖。容器利用Linux内核的命名空间和控制组技术&#xff0c;实现了隔离性和资源管理&#xff0c;使得应用程序在不同的容器中运行不会…

C++并发之协程实例(三)(co_await)

目录 1 协程2 实例3 运行 1 协程 协程(Coroutines)是一个可以挂起执行以便稍后恢复的函数。协程是无堆栈的&#xff1a;它们通过返回到调用方来暂停执行&#xff0c;并且恢复执行所需的数据与堆栈分开存储。这允许异步执行的顺序代码&#xff08;例如&#xff0c;在没有显式回调…

【Oracle】实验一 安装和使用Oracle数据库

【实验目的】 掌握Oracle软件安装过程&#xff0c;选择安装组件掌握建立Oracle数据库&#xff0c;配置网络连接使用SQL*Plus&#xff0c;登录到实例和数据库掌握命令方式的关闭和启动实例及数据库 【实验内容】 安装Oracle19c&#xff0c;记录安装过程。切记&#xff1a;创建…

自然语言处理学习路线(1)——NLP的基本流程

NLP基本流程 【NLP基本流程】 0. 获取语料 ——> 1. 语料预处理 ——> 2. 特征工程&选择 ——> 3. 模型训练 ——> 4. 模型输出&上线 【NLP基本流程图】 Reference 1. 自然语言处理(NLP)的一般处理流程&#xff01;-腾讯云开发者社区-腾讯云 2. …

数组初了解

一.引入 现在&#xff0c;有一个场景需求&#xff0c;我们需要将10个数字存入&#xff0c;也就是10个变量。但如果场景需求改变&#xff0c;是用户输入了10个数&#xff0c;让我们求里面的最大值。那10个变量就显得过于臃肿。 我们需要一个新的数据结构&#xff0c;来装一系列…

贪心推公式——AcWing 125. 耍杂技的牛

贪心推公式 定义 贪心算法是一种在每一步选择中都采取在当前状态下最优的选择&#xff0c;希望通过局部的最优选择来得到全局最优解的算法策略。 运用情况 问题具有最优子结构&#xff0c;即一个问题的最优解包含其子问题的最优解。可以通过局部最优决策逐步推导到全局最优…

stm32学习笔记---GPIO输入(理论部分)

目录 GPIO输入模式下的硬件和电路 按键原理 传感器原理 什么是上下拉电阻&#xff1f; 运算放大器当做比较器 按键的硬件电路 传感器的硬件电路 STM32用到的C语言知识 STM32中的C语言数据类型 C语言中的宏定义 typedef和define的区别是什么&#xff1f; C语言的枚举…

Python itertools模块

itertools 是 Python 标准库中的一个模块&#xff0c;它提供了许多用于操作迭代对象的工具函数。这些函数可以高效地生成迭代器&#xff0c;用于处理序列和集合&#xff0c;特别适用于循环和组合数学。以下是 itertools 模块中一些常用函数的概述&#xff1a; 一、无限迭代器 i…

如何理解广角镜头和长焦镜头的区别。

为什么广角镜头的视野会比长焦镜头的视野大呢&#xff1f; 我之前用等光程解释了景深&#xff0c;也解释了为什么焦距越远&#xff0c;成像越大&#xff0c;但是从来没有提到过视野范围这个概念。实际上在我之前建立的数学模型中&#xff0c;物曲面S是无限大的&#xff0c;像曲…

管综 之 逻辑

1.复言命题 1.1假言推理 1.命题模型识别:当题干中出现如果那么&#xff0c;只有才&#xff0c;当且仅当等典型关联词时此题考的是简单假言推理问题 2.三步解题法:1️⃣:画箭头 2️⃣:递否 3️⃣:找答案 口诀&#xff1a; [口诀1]充分条件前推后 [口诀2]逆否命题等价于原命题 […

一加全机型TWRP合集/橙狐recovery下载-20240603更新-支持一加12/Ace3V手机

TWRP是目前安卓平台的刷机神器&#xff0c;可快速刷写第三方ROM或官方系统&#xff0c;刷入TWRP之前需要解锁BL&#xff0c;目前已适配一加多个机型。ROM乐园小编20240603整理&#xff0c;涵盖一加1到一加Ace3V多机型专用TWRP文件&#xff0c;个人机型橙狐recovery适配相对完整…