AI学习指南机器学习篇-KNN算法模型评估

AI学习指南机器学习篇-KNN算法模型评估

在机器学习领域,K最近邻(KNN)算法是一种常用的监督学习算法,它可以用来解决分类和回归问题。在实际应用中,评估模型的性能是至关重要的一步。本文将讨论KNN算法的模型评估指标,包括准确率、召回率、F1分数等,并解释这些评估指标在评价分类模型性能时的作用和局限性。

1. KNN算法简介

K最近邻(KNN)算法是一种基本的分类和回归方法,它的原理是:对于给定的训练样本集,每个样本点都可以用它最接近的K个邻居来代表。对于分类问题,KNN算法会统计这K个邻居中各个类别出现的频率,然后将测试样本分到具有最高频率的类别中。而对于回归问题,KNN算法会将这K个邻居的平均值作为预测结果。

虽然KNN算法简单易懂,但是在实际应用中,需要对模型的性能进行评估,以了解模型的预测能力和泛化能力。

2. KNN模型评估指标

2.1 准确率(Accuracy)

准确率是分类模型最常用的评估指标之一,它指的是模型预测正确的样本数占总样本数的比例。其计算公式为:
[ A c c u r a c y = T P + T N T P + T N + F P + F N ] [ Accuracy = \frac{TP + TN}{TP + TN + FP + FN} ] [Accuracy=TP+TN+FP+FNTP+TN]
其中, T P TP TP表示真正例(模型将正类预测为正类的样本数)、 T N TN TN表示真负例(模型将负类预测为负类的样本数)、 F P FP FP表示假正例(模型将负类预测为正类的样本数)、 F N FN FN表示假负例(模型将正类预测为负类的样本数)。

2.2 召回率(Recall)

召回率衡量的是模型找到的正样本占所有正样本的比例。其计算公式为:
[ R e c a l l = T P T P + F N ] [ Recall = \frac{TP}{TP + FN} ] [Recall=TP+FNTP]
召回率也被称为敏感度(Sensitivity)或真正例率(TPR)。

2.3 精准率(Precision)

精准率是指模型预测为正样本的样本中,真正为正样本的比例。其计算公式为:
[ P r e c i s i o n = T P T P + F P ] [ Precision = \frac{TP}{TP + FP} ] [Precision=TP+FPTP]

2.4 F1分数(F1 Score)

F1分数综合考虑了精准率和召回率,它是精准率和召回率的调和平均值,其计算公式为:
[ F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l ] [ F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} ] [F1=2×Precision+RecallPrecision×Recall]

3. 评估指标的作用和局限性

3.1 准确率的作用和局限性

准确率是最直观的评价指标,它可以帮助我们了解模型在整体样本上的表现情况。然而,当数据存在类别不平衡的情况时,准确率就会失去意义,因为模型只需简单地把样本都预测为多数类,就可以得到高的准确率。因此,在类别不平衡的情况下,准确率并不能很好地评价模型的性能。

3.2 召回率的作用和局限性

召回率可以帮助我们了解模型在识别正样本方面的表现。在一些应用场景中,对于漏检(即将正样本预测为负样本)的代价非常高,此时召回率是一个非常重要的指标。然而,召回率只关注了正样本的识别情况,而对负样本的识别情况不敏感。因此,在不同应用场景下需要综合考虑召回率和其他指标。

3.3 精准率的作用和局限性

精准率可以帮助我们了解模型在预测为正样本的样本中,真正为正样本的比例。在一些应用场景中,对于误判(即将负样本预测为正样本)的代价非常高,此时精准率是一个非常重要的指标。然而,精准率只关注了预测为正样本的准确性,而对负样本的识别情况不敏感。因此,在不同应用场景下需要综合考虑精准率和其他指标。

3.4 F1分数的作用和局限性

F1分数综合考虑了精准率和召回率,可以在一定程度上解决精准率和召回率之间的 trade-off问题。然而,F1分数仍然只是单一评价指标,无法全面反映模型的性能。在一些特定的应用场景中,可能需要根据实际需求综合考虑精准率、召回率等多个评价指标。

4. 示例

假设我们有一个二分类的数据集,其中包含1000个正样本和100个负样本。我们使用KNN算法对该数据集进行分类,并得到如下混淆矩阵:

预测为正样本预测为负样本
真实正样本800200
真实负样本3070

现在我们来计算准确率、召回率、精准率和F1分数。

4.1 准确率

[ A c c u r a c y = 800 + 70 800 + 70 + 200 + 30 = 0.87 ] [ Accuracy = \frac{800 + 70}{800 + 70 + 200 + 30} = 0.87 ] [Accuracy=800+70+200+30800+70=0.87]

4.2 召回率

[ R e c a l l = 800 800 + 200 = 0.8 ] [ Recall = \frac{800}{800 + 200} = 0.8 ] [Recall=800+200800=0.8]

4.3 精准率

[ P r e c i s i o n = 800 800 + 200 = 0.8 ] [ Precision = \frac{800}{800 + 200} = 0.8 ] [Precision=800+200800=0.8]

4.4 F1分数

[ F 1 = 2 × 0.8 × 0.8 0.8 + 0.8 = 0.8 ] [ F1 = 2 \times \frac{0.8 \times 0.8}{0.8 + 0.8} = 0.8 ] [F1=2×0.8+0.80.8×0.8=0.8]
通过这个例子,我们可以看到不同的评估指标在评价模型性能时的作用和局限性。在这种情况下,准确率、召回率、精准率和F1分数都表现出较好的性能,但是在不同应用场景下,我们还需要结合实际需求来综合评价模型性能。

5. 总结

在本文中,我们讨论了KNN算法的模型评估指标,包括准确率、召回率、精准率和F1分数,并解释了这些评估指标在评价分类模型性能时的作用和局限性。通过实际示例,我们可以更好地理解不同评估指标的计算方法和意义,从而更好地评价和优化模型性能。在实际应用中,我们需要根据具体问题的特点来选择适合的评估指标,并综合考虑多个指标来全面评价模型的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/29240.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

兼容MacOS和FreeBSD软件包的开源ravynOS操作系统

ravynOS 是一个新型的操作系统项目,致力于在 x86-64(终极目标是同时实现 ARM)平台上提供与 macOS 类似的体验和兼容性。它基于坚若磐石的 FreeBSD、现有的开源代码和锦上添花的新代码构建。 主要设计目标: 与 macOS 应用程序的源…

语音质量评价方法之MOS

引言 在语音增强、语音合成、语音转换、声音转换、语音克隆、语音修复等等领域,常常要对输出的语音进行评价。对语音的质量评价一般关注两个方面,即主观评价和客观评价。主观评价就是人凭借听觉感受对语音进行打分,客观评价比较广泛&#xf…

学生成绩评分 - Scala

文章目录 一、第1关:对学生成绩进行评分 一、第1关:对学生成绩进行评分 实训目标 掌握 Scala 中运算符嵌套的使用 了解 if-else if-else 语句的使用 实训分析 利用条件运算符的嵌套来完成此题:学习成绩 150 - 90 分的同学成绩评分为&#…

【JVM结构、JVM参数、JVM垃圾回收】

JVM:Java Virtual Machine java虚拟机 虚拟机:使用软件技术模拟出与具有完整硬件系统功能、运行在一个隔离环境中的计算机系统。 JVM官方文档:https://docs.oracle.com/javase/specs/jvms/se8/html/index.html java 一些命令 javac 将文件编…

常用算法及参考算法 (1)累加 (2)累乘 (3)素数 (4)最大公约数 (5)最值问题 (6)迭代法

常用算法及参考算法 &#xff08;1&#xff09;累加 &#xff08;2&#xff09;累乘 &#xff08;3&#xff09;素数 &#xff08;4&#xff09;最大公约数 &#xff08;5&#xff09;最值问题 &#xff08;6&#xff09;迭代法 1. 累加 #include <stdio.h>int main() {…

上海亚商投顾:沪指缩量调整 PCB概念股持续爆发

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 大小指数昨日走势分化&#xff0c;沪指全天震荡调整&#xff0c;创业板指午后涨超1%。消费电子板块全天强势&a…

GenAI安全成关注焦点!专业Bot管理厂商瑞数信息获Gartner投资推荐

近日&#xff0c;全球权威IT与顾问咨询公司Gartner发布报告Invest Implications: Generative AI Adoption: Top Security Threats, Risks and Mitigations&#xff08;《投资影响&#xff1a;采用生成式AI&#xff1a;顶级安全威胁、风险和缓解措施》&#xff09;&#xff0c;该…

【ARM】MDK Debug模式下Disassembly窗口介绍

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 主要了解Disassembly窗口中包含的内容&#xff0c;和如何利用Disassembly中的内容了解程序的存储和调用情况。 2、 问题场景 对于Disassembly窗口中具体包含的内容不了解&#xff0c;无法合理地应用Disassembly窗口…

Docker的基本操作 及 容器与外部机互相通讯(持续更新中)

Docker入门&#xff1a; Docker 入门教程 - 阮一峰的网络日志 (ruanyifeng.com)docker入门&#xff0c;这一篇就够了。-CSDN博客Docker 容器使用 | 菜鸟教程 (runoob.com)Docker自定义网络和运行时指定IP_docker run ip-CSDN博客 基本命令 链接&#xff1a;docker入门&#…

希尔排序-C语言版本

前言 从希尔开始&#xff0c;排序的速度就开始上升了&#xff0c;这里的排序开始上一个难度了&#xff0c;当然难一点的排序其实也不是很难&#xff0c;当你对于插入排序了解的足够深入的时候&#xff0c;你会发现其实希尔就是插入的异形&#xff0c;但是本质上还是一样的 希尔…

openresty(Nginx) 301重定向域名 http访问强制使用https

1 访问http 2 修改配置访问 server {listen 80;server_name example.cn;return 301 https://$server_name$request_uri;access_log /data/logs/czgzzfjgsup_access.log access;error_log /data/logs/czgzzfjg_error.log error;#location / {root /usr/local/open…

Mac 开发vscode常用命令

1 打开vscode settting配置 commandshiftp 输入&#xff1a;Open User Setting 2

CV预测:快速使用DenseNet神经网络

AI预测相关目录 AI预测流程&#xff0c;包括ETL、算法策略、算法模型、模型评估、可视化等相关内容 最好有基础的python算法预测经验 EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transform…

面试经验分享 | 24年6月某安全厂商HW面试经验

所面试的公司&#xff1a;某安全厂商 所在城市&#xff1a;安徽省 面试职位&#xff1a;蓝初 面试过程&#xff1a; 腾讯会议&#xff08;语音&#xff09; 面试过程&#xff1a;整体流程就是自我介绍加上一些问题问题balabalabala。。。由于面的是蓝队所以渗透部分不会太多…

小规模自建 Elasticsearch 的部署及优化

本文将详细介绍如何在 CentOS 7 操作系统上部署并优化 Elasticsearch 5.3.0,以承载千万级后端服务的数据采集。要使用Elasticsearch至少需要三台独立的服务器,本文所用服务器配置为4核8G的ECS云服务器,其中一台作为 master + data 节点、一台作为 client + data 节点、最后一…

QT——MySQL数据库联用

一、ODBC 1、ODBC简介 ODBC全称为Open Database Connectivity,是一种用于数据库操作的标准接口。要使用ODBC,首先需要安装相应的ODBC驱动程序,然后在系统中配置ODBC数据源。接着,可以通过编程语言(如C++、Java等)或者数据库工具(如SQL Server Management Studio)来连…

Visual Studio Code的安装与配置

Visual Studio Code&#xff08;简称 VS Code&#xff09;是 Microsoft 在2015年4月30日 Build 开发者大会上正式宣布一个运行于 Mac OS X、Windows和 Linux 之上的&#xff0c;针对于编写现代 Web 和云应用的跨平台源代码编辑器&#xff0c;可在桌面上运行&#xff0c;并且可用…

Unity API学习之资源的动态加载

资源的动态加载 在实际游戏开发的更新换代中&#xff0c;随着开发的软件不断更新&#xff0c;我们在脚本中需要拖拽赋值的变量会变空&#xff0c;而要想重新拖拽又太花费时间&#xff0c;因此我们就需要用到Resources.Load<文件类型>("文件名")函数来在一开始…

大模型基础——从零实现一个Transformer(5)

大模型基础——从零实现一个Transformer(1)-CSDN博客 大模型基础——从零实现一个Transformer(2)-CSDN博客 大模型基础——从零实现一个Transformer(3)-CSDN博客 大模型基础——从零实现一个Transformer(4)-CSDN博客 一、前言 上一篇文章已经把Encoder模块和Decoder模块都已…

深度學習筆記12-優化器對比(Tensorflow)

&#x1f368; 本文為&#x1f517;365天深度學習訓練營 中的學習紀錄博客&#x1f356; 原作者&#xff1a;K同学啊 | 接輔導、項目定制 一、我的環境 電腦系統&#xff1a;Windows 10 顯卡&#xff1a;NVIDIA Quadro P620 語言環境&#xff1a;Python 3.7.0 開發工具&…