目录
详细布置:
1. 回溯总结
2. 332. 重新安排行程
3. 51. N 皇后
4. 37. 解数独
详细布置:
1. 回溯总结
回溯是递归的副产品,只要有递归就会有回溯,所以回溯法也经常和二叉树遍历,深度优先搜索混在一起,因为这两种方式都是用了递归。
回溯法就是暴力搜索,并不是什么高效的算法,最多再剪枝一下。
回溯算法能解决如下问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 棋盘问题:N皇后,解数独等等
详细总结可以移步代码随想录:回溯总结- 代码随想录
2. 332. 重新安排行程
给你一份航线列表
tickets
,其中tickets[i] = [fromi, toi]
表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。所有这些机票都属于一个从
JFK
(肯尼迪国际机场)出发的先生,所以该行程必须从JFK
开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
- 例如,行程
["JFK", "LGA"]
与["JFK", "LGB"]
相比就更小,排序更靠前。假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
直觉上来看 这道题和回溯法没有什么关系,更像是图论中的深度优先搜索。
实际上确实是深搜,但这是深搜中使用了回溯的例子,在查找路径的时候,如果不回溯,怎么能查到目标路径呢。
所以我倾向于说本题应该使用回溯法,那么我也用回溯法的思路来讲解本题,其实深搜一般都使用了回溯法的思路,在图论系列中我会再详细讲解深搜。
这里就是先给大家拓展一下,原来回溯法还可以这么玩!
这道题目有几个难点:
- 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
- 有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
- 使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
- 搜索的过程中,如何遍历一个机场所对应的所有机场。
from collections import defaultdictclass Solution:def findItinerary(self, tickets):targets = defaultdict(list) # 创建默认字典,用于存储机场映射关系for ticket in tickets:targets[ticket[0]].append(ticket[1]) # 将机票输入到字典中for key in targets:targets[key].sort(reverse=True) # 对到达机场列表进行字母逆序排序result = []self.backtracking("JFK", targets, result) # 调用回溯函数开始搜索路径return result[::-1] # 返回逆序的行程路径def backtracking(self, airport, targets, result):while targets[airport]: # 当机场还有可到达的机场时next_airport = targets[airport].pop() # 弹出下一个机场self.backtracking(next_airport, targets, result) # 递归调用回溯函数进行深度优先搜索result.append(airport) # 将当前机场添加到行程路径中
3. 51. N 皇后
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将
n
个皇后放置在n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数
n
,返回所有不同的 n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中
'Q'
和'.'
分别代表了皇后和空位。
4. 37. 解数独
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。- 数字
1-9
在每一列只能出现一次。- 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)数独部分空格内已填入了数字,空白格用
'.'
表示。
N皇后问题 是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来遍历列,然后一行一列确定皇后的唯一位置。
本题就不一样了,本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。
class Solution:def solveSudoku(self, board: List[List[str]]) -> None:"""Do not return anything, modify board in-place instead."""self.backtracking(board)def backtracking(self, board: List[List[str]]) -> bool:# 若有解,返回True;若无解,返回Falsefor i in range(len(board)): # 遍历行for j in range(len(board[0])): # 遍历列# 若空格内已有数字,跳过if board[i][j] != '.': continuefor k in range(1, 10):if self.is_valid(i, j, k, board):board[i][j] = str(k)if self.backtracking(board): return Trueboard[i][j] = '.'# 若数字1-9都不能成功填入空格,返回False无解return Falsereturn True # 有解def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool:# 判断同一行是否冲突for i in range(9):if board[row][i] == str(val):return False# 判断同一列是否冲突for j in range(9):if board[j][col] == str(val):return False# 判断同一九宫格是否有冲突start_row = (row // 3) * 3start_col = (col // 3) * 3for i in range(start_row, start_row + 3):for j in range(start_col, start_col + 3):if board[i][j] == str(val):return Falsereturn True