基于STM32和人工智能的智能水质监测系统

目录

  1. 引言
  2. 环境准备
  3. 智能水质监测系统基础
  4. 代码实现:实现智能水质监测系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:智能水质管理与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着环境保护意识的提高,智能水质监测系统在水质监测和水资源管理中起到了重要作用。通过人工智能算法对水质数据进行分析,可以实现更加精准的水质监测和管理。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个智能水质监测系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • pH传感器:用于检测水质pH值
  • 温度传感器:如DS18B20
  • 溶解氧传感器:用于检测水中的溶解氧含量
  • 电导率传感器:用于检测水的电导率
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于数据分析和预测

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 智能水质监测系统基础

控制系统架构

智能水质监测系统由以下部分组成:

  • 数据采集模块:用于采集水质数据(pH值、温度、溶解氧、电导率等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和预测
  • 控制系统:根据分析结果提供水质管理建议和报警
  • 显示系统:用于显示水质数据和系统状态
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过pH传感器、温度传感器、溶解氧传感器和电导率传感器采集水质数据,并使用人工智能算法进行分析和预测,实时显示和记录水质数据,实现智能化的水质监测和管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态和预测结果。

4. 代码实现:实现智能水质监测系统

4.1 数据采集模块

配置pH传感器
使用STM32CubeMX配置ADC接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc1;void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc1.Instance = ADC1;hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc1.Init.Resolution = ADC_RESOLUTION_12B;hadc1.Init.ScanConvMode = DISABLE;hadc1.Init.ContinuousConvMode = ENABLE;hadc1.Init.DiscontinuousConvMode = DISABLE;hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc1.Init.NbrOfConversion = 1;hadc1.Init.DMAContinuousRequests = DISABLE;hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc1);sConfig.Channel = ADC_CHANNEL_0;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}float Read_pH(void) {HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);uint32_t adc_value = HAL_ADC_GetValue(&hadc1);// 转换为pH值float voltage = adc_value * (3.3 / 4096.0);float pH = 7 + ((voltage - 2.5) / 0.18);return pH;
}int main(void) {HAL_Init();SystemClock_Config();ADC_Init();float pH_value;while (1) {pH_value = Read_pH();HAL_Delay(1000);}
}

配置DS18B20温度传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "ds18b20.h"void DS18B20_Init(void) {// 初始化DS18B20传感器
}float Read_Temperature(void) {return DS18B20_ReadTemperature();
}int main(void) {HAL_Init();SystemClock_Config();DS18B20_Init();float temperature;while (1) {temperature = Read_Temperature();HAL_Delay(1000);}
}

配置溶解氧传感器
使用STM32CubeMX配置ADC接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc2;void ADC2_Init(void) {__HAL_RCC_ADC2_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc2.Instance = ADC2;hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc2.Init.Resolution = ADC_RESOLUTION_12B;hadc2.Init.ScanConvMode = DISABLE;hadc2.Init.ContinuousConvMode = ENABLE;hadc2.Init.DiscontinuousConvMode = DISABLE;hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc2.Init.NbrOfConversion = 1;hadc2.Init.DMAContinuousRequests = DISABLE;hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc2);sConfig.Channel = ADC_CHANNEL_1;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc2, &sConfig);
}float Read_Dissolved_Oxygen(void) {HAL_ADC_Start(&hadc2);HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);uint32_t adc_value = HAL_ADC_GetValue(&hadc2);// 转换为溶解氧浓度float voltage = adc_value * (3.3 / 4096.0);float dissolved_oxygen = voltage * 10; // 示例转换公式return dissolved_oxygen;
}int main(void) {HAL_Init();SystemClock_Config();ADC2_Init();float do_value;while (1) {do_value = Read_Dissolved_Oxygen();HAL_Delay(1000);}
}

配置电导率传感器
使用STM32CubeMX配置ADC接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc3;void ADC3_Init(void) {__HAL_RCC_ADC3_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc3.Instance = ADC3;hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc3.Init.Resolution = ADC_RESOLUTION_12B;hadc3.Init.ScanConvMode = DISABLE;hadc3.Init.ContinuousConvMode = ENABLE;hadc3.Init.DiscontinuousConvMode = DISABLE;hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc3.Init.NbrOfConversion = 1;hadc3.Init.DMAContinuousRequests = DISABLE;hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc3);sConfig.Channel = ADC_CHANNEL_2;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc3, &sConfig);
}float Read_Conductivity(void) {HAL_ADC_Start(&hadc3);HAL_ADC_PollForConversion(&hadc3, HAL_MAX_DELAY);uint32_t adc_value = HAL_ADC_GetValue(&hadc3);// 转换为电导率值float voltage = adc_value * (3.3 / 4096.0);float conductivity = voltage * 1000; // 示例转换公式return conductivity;
}int main(void) {HAL_Init();SystemClock_Config();ADC3_Init();float conductivity_value;while (1) {conductivity_value = Read_Conductivity();HAL_Delay(1000);}
}
``

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据namespace {tflite::MicroErrorReporter micro_error_reporter;tflite::MicroInterpreter* interpreter = nullptr;TfLiteTensor* input = nullptr;TfLiteTensor* output = nullptr;constexpr int kTensorArenaSize = 2 * 1024;uint8_t tensor_arena[kTensorArenaSize];
}void AI_Init(void) {tflite::InitializeTarget();static tflite::MicroMutableOpResolver<10> micro_op_resolver;micro_op_resolver.AddFullyConnected();micro_op_resolver.AddSoftmax();const tflite::Model* model = tflite::GetModel(model_data);if (model->version() != TFLITE_SCHEMA_VERSION) {TF_LITE_REPORT_ERROR(&micro_error_reporter,"Model provided is schema version %d not equal ""to supported version %d.",model->version(), TFLITE_SCHEMA_VERSION);return;}static tflite::MicroInterpreter static_interpreter(model, micro_op_resolver, tensor_arena, kTensorArenaSize,&micro_error_reporter);interpreter = &static_interpreter;interpreter->AllocateTensors();input = interpreter->input(0);output = interpreter->output(0);
}void AI_Run_Inference(float* input_data, float* output_data) {// 拷贝输入数据到模型输入张量for (int i = 0; i < input->dims->data[0]; ++i) {input->data.f[i] = input_data[i];}// 运行模型推理if (interpreter->Invoke() != kTfLiteOk) {TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");return;}// 拷贝输出数据for (int i = 0; i < output->dims->data[0]; ++i) {output_data[i] = output->data.f[i];}
}int main(void) {HAL_Init();SystemClock_Config();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 根据模型输出数据执行相应的操作HAL_Delay(1000);}
}

4.3 控制系统

配置GPIO控制报警和LED指示灯
使用STM32CubeMX配置GPIO:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define ALARM_PIN GPIO_PIN_1
#define LED_PIN GPIO_PIN_2
#define GPIO_PORT GPIOBvoid GPIO_Init(void) {__HAL_RCC_GPIOB_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = ALARM_PIN | LED_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void Control_Alarm(uint8_t state) {HAL_GPIO_WritePin(GPIO_PORT, ALARM_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}void Control_LED(uint8_t state) {HAL_GPIO_WritePin(GPIO_PORT, LED_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 根据AI输出控制报警和LED灯uint8_t alarm_state = output_data[0] > 0.5;uint8_t led_state = output_data[1] > 0.5;Control_Alarm(alarm_state);Control_LED(led_state);HAL_Delay(1000);}
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏
使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"void Display_Init(void) {LCD_TFT_Init();
}void Display_Water_Quality_Data(float* output_data) {char buffer[32];sprintf(buffer, "pH: %.2f", output_data[0]);LCD_TFT_Print(buffer);sprintf(buffer, "Temp: %.2f C", output_data[1]);LCD_TFT_Print(buffer);sprintf(buffer, "DO: %.2f mg/L", output_data[2]);LCD_TFT_Print(buffer);sprintf(buffer, "Cond: %.2f uS/cm", output_data[3]);LCD_TFT_Print(buffer);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();DS18B20_Init();MAX30100_Init();ADXL345_Init();AI_Init();Display_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 读取传感器数据并填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 显示水质数据和AI结果Display_Water_Quality_Data(output_data);// 根据AI结果控制报警和LED灯uint8_t alarm_state = output_data[4] > 0.5;uint8_t led_state = output_data[5] > 0.5;Control_Alarm(alarm_state);Control_LED(led_state);HAL_Delay(1000);}
}

5. 应用场景:智能水质管理与优化

农业灌溉

智能水质监测系统可以应用于农业灌溉,通过实时监测和分析灌溉水质,确保农作物获得最佳的生长环境,提升农业产量和质量。

环境保护

在环境保护领域,智能水质监测系统可以用于监控河流、湖泊和地下水的水质,及时发现污染源并采取措施,保护水资源环境。

工业水处理

智能水质监测系统在工业水处理中的应用,可以实现对工业废水的实时监测和处理,确保排放水质符合环保标准,减少对环境的污染。

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行环境预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的水质管理。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能水质监测系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能水质监测系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/28669.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C/C++】【学生成绩管理系统】深度剖析

可接各类C/C管理系统课设 目录 实现功能 部分1&#xff1a;系统设置和主菜单 1. 引入头文件 2. 定义结构体 3. 函数声明 4. 主函数 部分2&#xff1a;添加学生信息 部分3&#xff1a;删除学生信息 部分4&#xff1a;修改学生信息 部分5&#xff1a;查询学生信息 部分…

数组元素的内存地址计算【数据结构与算法C#版】

数组元素被存储在连续的内存空间中&#xff0c;这意味着计算数组元素的内存地址非常容易。给定数组内存地址&#xff08;首 元素内存地址&#xff09;和某个元素的索引&#xff0c;我们可以使用下方图 所示的公式计算得到该元素的内存地址&#xff0c;从而直接 访问该元素。 观…

电源小白入门学习11——反激电源电路原理

电源小白入门学习11——反激电源、正激电源 隔离电源变压器介绍反激电源 前面我们学习了BUCK、BOOST、BUCK-BOOST 等各种各样的DCDC变换器&#xff0c;但是他们都有一共同的特点&#xff0c;即能量的传输路径时一个完整的通路&#xff0c;输入与输出之间不存在电气隔离&#xf…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 字符串变换(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 字符串变换(100分) 🌍 评测功能需要订阅专栏后私信联系清隆…

【Unity实战篇】| 快速制作一个简易时钟,包括2D和3D时钟

前言 【Unity实战篇】| 快速制作一个时钟&#xff0c;包括2D和3D时钟一、2D时钟制作1.1 钟表盘制作1.2 指针制作1.3 钟表搭建1.4 设置时钟的中心点1.5 时钟旋转逻辑 二、3D时钟制作2.1 搭建表盘和指针2.2 调整指针的位置和节点2.3 时钟旋转逻辑 总结 前言 时钟 这个东西想必不…

JAVA小知识21:单列集合顶层接口Collection的使用

一、Collection简介 Collection是单列集合的顶层接口&#xff0c;所有的单列集合都集成自Collection。 那么什么是单列集合呢&#xff1f;我们上篇文章提到了List与ArrayList&#xff0c;List就是单列集合&#xff0c;他是无需可重复单列集合的顶层抽象类&#xff0c;我们学…

定个小目标之刷LeetCode热题(22)

这道题最容易想的就是排序后再遍历&#xff0c;但是时间复杂度就不是O(n)了&#xff0c;所以还是得用更优的解法&#xff0c;直接看题解&#xff0c;它是使用了HashSet&#xff0c;遍历数组&#xff0c;对于每一个数x&#xff0c;如果不存在x - 1则进入内循环&#xff0c;否则跳…

适合小白学习的项目1906java Web智慧食堂管理系统idea开发mysql数据库web结构java编程计算机网页源码servlet项目

一、源码特点 java Web智慧食堂管理系统是一套完善的信息管理系统&#xff0c;结合java 开发技术和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 前段主要技术 bootstra…

C语言的网络编程

目录 引言 一、TCP/IP概述 1. TCP&#xff08;Transmission Control Protocol&#xff09; 2. UDP&#xff08;User Datagram Protocol&#xff09; 二、Socket编程基础 1. 服务器端 2. 客户端 三、URL与HTTP编程 1. 使用libcurl进行HTTP请求 表格总结 TCP/IP与Socke…

aop注解快速实现数据脱敏返回

说明&#xff1a; 公司之前数据接口数据管理不严格&#xff0c;很多接口的敏感数据都没有脱敏处理&#xff0c;直接返回给前端了&#xff0c;然后被甲方的第三方安全漏洞扫出来&#xff0c;老板要求紧急处理&#xff0c;常用的话在单个字段上加上脱敏注解会更加的灵活&#xf…

基于Quartus Prime18.1的安装与FPGA的基础仿真(联合Modelsim)教程

Quartus是一种美国科技公司Intel&#xff08;英特尔&#xff09;公司开发的FPGA&#xff08;现场可编辑门阵列&#xff09;设计编译软件&#xff0c;用作设计、仿真、综合和布局、支持多种编程语言&#xff0c;包括VHDL、Verilog等&#xff0c;并具有丰富的功能和工具库&#x…

SpringCloud学习笔记 - 1、Boot和Cloud版本选型

文章目录 前言需要&#xff08;学习/用到&#xff09;的技术SpringBoot版本的选择我们为什么要使用 Java 17&#xff0c;以及SpringBoot 3.2 呢&#xff1f; SpringCloud 版本的选择SpringCloud 命名规则Springcloud Alibaba 版本的选择如何确定Boot&#xff0c;Cloud&#xff…

大模型太贵?找找自己的原因好吧?

什么&#xff1f; 炼个大模型还嫌贵&#xff1f; 到底哪里贵了&#xff01;&#xff1f; 大模型算力贵&#xff1f;哪里贵了&#xff01;&#xff1f; 争先恐后训练大模型&#xff0c; 搞得现在“算力慌”“一卡难求”&#xff0c; 算力当然水涨船高了! “特供版”GPU又…

MYSQL、ORACLE、PostgreSQL数据库对象层次及权限管理对比

文章目录 前言一、PostgreSQL二、MySQL三、Oracle 前言 本文为出于自己扩展、比较、图形化的思维路径自行总结归纳&#xff0c;可能有些细节不太准确&#xff0c;欢迎指正。 MySQL、Oracle、PostgreSQL关系型数据库都有管理员用户、用户、权限管理、表函数索引等数据库对象&am…

hexo实战:(二)个人独立博客优化合集

前言 上次介绍了使用 HexoGitHub Pages&#xff0c;零成本搭建一个专属自己的独立博客网站。我觉得那篇文章是没有入门门槛的&#xff0c;不管你是什么行业&#xff0c;只要想打造个人 IP&#xff0c;又不太想受博客平台约束&#xff0c;那么读完后动手操作一下也能轻松完成。…

[vue3]组件通信

自定义属性 父组件中给子组件绑定属性, 传递数据给子组件, 子组件通过props选项接收数据 props传递的数据, 在模版中可以直接使用{{ message }}, 在逻辑中使用props.message defineProps defineProps是编译器宏函数, 就是一个编译阶段的标识, 实际编译器解析时, 遇到后会进行…

Oracle 是否扼杀了开源 MySQL

Oracle 是否无意中扼杀了开源 MySQL Peter Zaitsev是一位俄罗斯软件工程师和企业家&#xff0c;曾在MySQL公司担任性能工程师。大约15年前&#xff0c;当甲骨文收购Sun公司并随后收购MySQL时&#xff0c;有很多关于甲骨文何时“杀死MySQL”的讨论。他曾为甲骨文进行辩护&#…

【GD32F303红枫派使用手册】第十七节 USART-中断串口收发实验

17.1 实验内容 通过本实验主要学习以下内容&#xff1a; 使用中断进行串口收发 17.2 实验原理 前面章节中我们已经学习了串口的状态标志位&#xff0c;本实验就是使用TBE中断和RBNE中断来实现中断收发数据&#xff0c;实验原理是RBNE中断用来接受数据&#xff0c;IDLE中断用…

记录第一次edusrc挖掘

文章目录 一、前言二、漏洞说明截止目前已修复 一、前言 edusrc平台介绍 我们可以在关于页面看到edusrc的收录规则 现阶段&#xff0c;教育行业漏洞报告平台接收如下类别单位漏洞&#xff1a; 教育部 各省、自治区教育厅、直辖市教委、各级教育局 学校 教育相关软件 可以看到…

基于FOC控制器的BLDC无刷直流电机控制系统matlab编程与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于FOC控制器的BLDC无刷直流电机控制系统matlab编程与仿真&#xff0c;使用MATLAB编程实现&#xff0c;包括FOC控制器&#xff0c;clark&#xff0c;park等&#xff0c;不使用…