大模型企业落地:汽车行业知识大模型应用

前言

在当今这个信息爆炸的时代,知识管理成为了企业提升核心竞争力的关键。特别是在汽车行业这样一个技术密集、信息量庞大的领域,如何高效管理和利用知识资源,成为了每个企业必须面对的挑战。

汽车行业的知识管理痛点

汽车行业作为现代工业的集大成者,其知识体系庞杂而精细。从设计知识到生产知识,从营销知识到客户服务知识,每一个环节都依赖于大量的专业信息和经验积累。然而,传统的知识管理方式面临着诸多挑战:

知识分散:知识分布在不同的部门和个人手中,难以统一管理和共享。

知识更新滞后:技术日新月异,知识更新速度跟不上行业发展。

知识利用效率低:员工在需要时难以快速找到所需知识,影响工作效率。

上岗知识难以培训:入职后,需要经过线下培训上岗所需的企业文化知识及业务知识,掌握程度难以跟踪和调整。

业务知识死记硬背:营销业务产品更新迭代速度较快,产品发布后通过邮件、群聊等方式进行知识传递,效率较低,监管较难,业务员对于知识需要背诵熟悉。

汽车行业大模型知识管理的解决方案

智能知识库建设:通过AI技术,实现知识的自动化收集、整理和更新,确保知识的时效性和准确性。

个性化知识推荐:根据员工的工作需求和兴趣,智能推荐相关知识,提高知识利用效率。

知识问答与检索:通过自然语言处理技术,员工可以直接通过提问的方式快速找到所需知识。

大模型在汽车行业的应用场景

**智慧营销客服之问答:**①对于已经搭建FAQ库的公司,大模型根据构建好的FAQ资源生成答案,在不干预机器人准确匹配的基础上进一步提升问答效果和交互友好度。②没有构建FAQ库,或不想维护FAQ的企业。只需要上传和维护文档资源,系统自动解析文档、统一文档结构,大模型自动识别意图、基于文档内容生成答案。

**智慧营销客服之FAQ构建:**通过大模型自动生成FAQ和自动构造与给定问题相关的多个类似问句,丰富知识库的内容,提高问答的覆盖率和准确性。

**智慧营销客服之陪练机器人:**以问答和场景式对话的形式,帮助学员练习业务知识和话术,通过“学-练-考-评”闭环的培训模式,强化实践经验积累,帮助企业人员持续性地提高技能。

**大****模型+知识消费,聚合搜索:**理解用户问句意图,总结出更可读、更全面、更清晰的回答,如果模型总结答案不准,可通过配置调整Prompt,教育答案总结的准确度,收集用户问句与答案,采集满意度反馈,提供大模型进行训练,不断提升聚合检索的准确度和应用体验。

大模型为汽车行业带来的价值

大模型知识管理方案为汽车行业带来的价值是多方面的:

**公共信息快速获得:**业务员入职后,快速了解公司品牌、产品信息等标准知识内容,建立公司知识网络,构建全面的公司公共信息知识体系,有利于帮助业务人员快速了解企业,为进入正式的业务技能学习建立良好基础。

**缩短上岗周期:**创建学习计划,配套专项题库刷题练习,利用碎片化时间,有计划地进行产品知识学习、话术学习、营销流程学习;学习后,配套专项考试。管理员监督学习及考试情况,根据技能画像掌握程度,定向辅导,快速上岗。

**精准检索,智能推送:**在线下营销过程中可随时进行流程预览、话术查询、产品知识搜索。根据业务员角色及搜索记录,可实现个性化推送,辅助开展线下业务工作。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/27560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

10.错误处理

标题 一、概述二、panic!与不可恢复错误2.1 出错时2.2 示例2.3 panic!的 backtrace 三、Result 与可恢复的错误3.1 引入3.2 错误示例3.3 传播错误1)概念2)传播错误示例3)传播错误的简写:?运算符 一、概述 Rust将错误分…

springboot网上书店管理系统-计算机毕业设计源码03780

摘 要 网上书店管理系统采用B/S结构、java开发语言、以及Mysql数据库等技术。系统主要分为管理员和用户两部分,管理员管理主要功能包括:首页、站点管理(轮播图)用户管理(管理员、注册用户)内容管理&#x…

深入理解ReentrantLock

深入理解ReentrantLock 在Java并发编程中,锁(Lock)是控制多个线程对共享资源访问的重要工具。虽然Synchronized关键字是实现锁的常用方式,但它在功能上比较有限。ReentrantLock是java.util.concurrent.locks包中提供的一个更加灵…

FreeRTOS移植:STM32L476 nucleo-L476RG 开发板《02》

系列文章 FreeRTOS移植:STM32L476 nucleo-L476RG 开发板《01》 说明 上一篇 FreeRTOS移植:STM32L476 nucleo-L476RG 开发板《01》 主要讲了一下如何快速搭建一个 STM32 裸机工程,其实 STM32CubeMX 可以生成 FreeRTOS 的工程,这就…

Linux host映射 设置主机名并通过主机名找到指定系统

一、windows ping linux 1.windows进入到 C:\Windows\System32\drivers\etc\hosts 内,使用edit with notepad打开hosts文件,在下面添加需要寻找的ip以及其主机名。该ip以及主机名即linux的一致。需要查看linux主机名的在终端使用 hostname进行查看&#…

spring boot3登录开发-邮箱登录/注册接口实现

⛰️个人主页: 蒾酒 🔥系列专栏:《spring boot实战》 🌊山高路远,行路漫漫,终有归途 目录 写在前面 上文衔接 内容简介 功能分析 所需依赖 邮箱验证登录/注册实现 1.创建交互对象 2.登录注册业务逻辑实…

JDK17 你的下一个白月光

JDK版本升级的非常快,现在已经到JDK20了。JDK版本虽多,但应用最广泛的还得是JDK8,正所谓“他发任他发,我用Java8”。 但实际情况却不是这样,越来越多的java工程师拥抱 JDK17,于是了解了一下 JDK17新语法&a…

Star-CCM+自动网格执行方法与设置技巧

在Star中进行一个仿真项目时,有时会创建多个自动网格。网格创建结束后需要执行。在Star中,网格执行可以分为三种。分别是:单独执行操作;多个执行操作;全部执行操作。接下来将三种执行操作的方法与步骤进行介绍。 其次,如果不习惯用自定义控制网格,有时在一个项目中就会…

大模型+人工智能:重塑地方志管理的新力量

前言 在科技日新月异的今天,人工智能(AI)正以前所未有的速度渗透到各个领域,改变着我们的工作和生活方式。特别是在地方志管理这一领域,大模型和人工智能的结合正在开启一场深刻的变革。今天,就让我们一起…

【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】梯度的反向传播算法

矩阵微积分(Matrix Calculus) 在开始之前,需要先了解矩阵微积分的一些计算规则。 首先,对于矩阵微积分的表示,通常由两种符号约定: 分母布局 标量关于向量的导数为列向量 向量关于标量的导数为行向量 N维…

LDR6500:手机电脑拓展坞转接器方案的卓越之选

随着科技的飞速发展,手机和电脑已成为我们日常生活中不可或缺的工具。然而,它们的接口有限,经常难以满足我们多样化的需求。这时,一款高效、稳定的拓展坞转接器就显得尤为重要。LDR6500,作为乐得瑞科技精心研发的USB P…

【计算机视觉(10)】

基于Python的OpenCV基础入门——图像滤波去噪 图像滤波去噪均值滤波中值滤波高斯滤波双边滤波方框滤波图像滤波去噪代码实现及其效果图 图像滤波去噪 图像滤波去噪是一种图像处理方法,它通过应用滤波器来减少或消除图像中的噪声。噪声是图像中不希望的、无用的、干…

安装sqlserver2022 express

1、下载 SQL Server 下载 | Microsoft 双击sql2022-ssei-expr 2、安装 下载完成以后,将会出现以下对话框 : 点击【全新SQL Server独立安装或向现有安全添加功能】 下一步,下一步: 下一步: 下一步,这里我…

【LeetCode:2779. 数组的最大美丽值 + 排序 + 二分】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

【docker】如何解决artalk的跨域访问问题

今天折腾halo的时候,发现artalk出现跨域访问报错,内容如下。 Access to fetch at https://artk.musnow.top/api/stat from origin https://halo.musnow.top has been blocked by CORS policy: The Access-Control-Allow-Origin header contains multipl…

Kotlin编程实践-【Java如何调用Kotlin中带默认值参数的函数】

问题 如果你有一个带有默认参数值的 Kotlin 函数,如何从 Java 调用它而无须为每个参数显式指定值? 方案 为函数添加注解JvmOverloads。 也就是为Java添加重载方法,这样Java调用Kotlin的方法时就不用传递全部的参数了。 示例 在 Kotlin …

企业环保创A标准

在环保日益受到重视的今天,企业如何有效地进行环保管理,提高自身的环保水平,已成为一个不可忽视的议题。而企业环保创A标准,正是为了评估企业的环保水平和环保管理能力而制定的一项重要评价标准。朗观视觉小编将详细解析企业环保创…

XILINX 7系列XDMA使用_IP核介绍以及工程搭建

文章目录 一、XDMA IP核1.1、接口说明1.2、配置页说明 二、XDMA工程搭建2.1、BD搭建2.2 Linux下XDMA驱动安装2.3 Linux下使用XDMA进行数据传输 一、XDMA IP核 1.1、接口说明 sys_clk:主机给PCIE提供的时钟信号,通过原理图查看 sys_rst_n:主机…

【已解决】引入 element 组件无法使用编译错误 ERROR Failed to compile with 1 error

如果大家使用这个vue 配合 element 框架不熟练,当你顺利按照文档安装好 vue 和 element 的时候想要使用element 的组件时候确无法展示出来,甚至报错。不妨看看是不是这个问题, 1.首先使用element 的时候,前提是把必须要的 elemen…

TCGAbiolinks包学习

TCGAbiolinks 写在前面学习目的GDCquery GDCdownload GDC prepare中间遇到的报错下载蛋白质数据 写在前面 由于别人提醒我TCGA的数据可以利用TCGAbiolinks下载并处理,所以我决定阅读该包手册,主要是该包应该是有更新的,我看手册进行更新了&…