手写kNN算法的实现-用欧几里德空间来度量距离

kNN的算法思路:找K个离预测点最近的点,然后让它们进行投票决定预测点的类型。

  1. step 1: kNN存储样本点的特征数据和标签数据
  2. step 2: 计算预测点到所有样本点的距离,关于这个距离,我们用欧几里德距离来度量(其实还有很多其他的,比如曼哈顿距离等),并进行排序,拿出前k个样本点。
  3. step 3: 统计前k个样本点的类别,以最多的那个类型作为预测结果。

上代码:

import numpy as np
# 用于统计
from collections import Counterclass MyKnn:# 初始化投票的数量,neighbors表示我们要找的点的数量,用于投票决定预测点的类型def __init__(self,neighbors):self.k = neighbors# 因为kNN是一个惰性机器性学习模型,只在预测阶段才会用到的训练数据,不存在训练阶段。或者说在所谓的训练阶段,只是为了存储样本数据。# X为特征集# Y为对应的标签集def fit(self,X,Y):self.X = np.array(X)self.Y = np.array(Y)# 如果特征集不是矩阵阵列或则标签集不是一维数组,都直接抛异常。if self.X.ndim != 2 or self.Y.ndim != 1:raise Exception("dimensions are wrong!")# 如果标签的数量不竺于特征集的行数也直接抛异常if self.X.shape[0] != self.Y.shape[0]:raise Exception("input labels are not correct!")def predict(self,X_pre):# 这是要预测的点pre = np.array(X_pre)# 判断测试点的矩阵是不是和样本点的矩阵一样的,不是直接抛异常if self.X.ndim != pre.ndim:raise Exception("input dimensions are wrong!")# 我们用rs数组来存储预测结果rs = []for p in pre:# 用temp临时数组来存储预测点到所有样本点的欧几里德距离temp = []for a in self.X:# 取出每一个样本点来与预测点计算欧几里德距离# np.sqrt(((p - a) ** 2).sum(-1)) 算出距离,先求出每预测点到样本点的差值,再平方,再将所有平方后的值加在一起,最后对加起来的结果进行开方,得到欧几里德距离。并临时存储在temp数组里temp.append(np.sqrt(((p - a) ** 2).sum(-1)))temp = np.array(temp)# 对所有距离进行排序,用np.argsort排序时,结果对识破距离的下标,而不是具体的值,因为我们并不关心具体的值,我们只要前k个点。用np.argsort排序完,取出前k个点的indices(就是下标)neighbors_indices = np.argsort(temp)[:self.k]#  通过前k个点的下标,取出相应的标签,然后用Counter进行统计(这个就是计票环节)ss = np.take(self.Y,neighbors_indices)# 我们开始计票,取出票数第一的标签值。# e.g: Counter(ss) -> {2: 4, 1: 1} 表示标签值为2的得4示,标签为1的得1票# most_common(1) -> [(2, 4)] , 所以most_common(1)[0][0]的值就是 2found = Counter(ss).most_common(1)[0][0]# 预测结果存储到rs数组中rs.append(found)return rs

欧几里德距离的计算:
请添加图片描述

测试上面的kNN算法:

# 用鸢尾花数据集来验证我们上面写的算法
from sklearn.datasets import load_iris
# 使用train_test_split对数据集进行拆分,一部分用于训练,一部分用于测试验证
from sklearn.model_selection import train_test_split
# 1.生成一个kNN模型
myknn = MyKnn(5)
# 2.准备数据集:特征集X_train和标签集y_train
X_train,y_train = load_iris(return_X_y=True)
# 留出30%的数据集用于验证测试
X_train,X_test,y_train,y_test = train_test_split(X_train,y_train,test_size=0.3)
# 3.训练模型
myknn.fit(X_train,y_train)
# 4.预测,acc就是预测结果
acc = myknn.predict(X_test)
# 计算准确率
(acc == y_test).mean()

acc == y_test 得到的结果是

array([ True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True,  True,  True,  True,  True,False,  True,  True,  True,  True,  True,  True,  True,  True])

True 是1,False是0,准确率就是:

正确的个数 / 总数 = 准确率

用余弦相似度实现kNN算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25291.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苍穹外卖笔记-07-菜品管理-增加、删除、修改、查询分页还有菜品起售或停售状态

菜品管理 1 新增菜品1.1 需求分析与设计1.2 代码开发文件上传新增菜品实现 1.3 功能测试 2 菜品分页查询2.1 需求分析和设计2.2 代码开发设计DTO类设计VO类Controller层Service层Mapper层 2.3 功能测试 3 删除菜品3.1 需求分析和设计3.2 代码开发Controller层Service层Mapper层…

机器学习——卷积神经网络

卷积神经网络CNN 多层感知机MLP的层数足够,理论上可以用其提取出二位特征,但是毕竟复杂,卷积神经网络就可以更合适的来提取高维的特征。 而卷积其实是一种运算 二维离散卷积的公式 可以看成g是一个图像的像素点,f是每个像素点对…

【计网复习】应用层总结(不含HTTP和错题重点解析)

应用层总结(不含HTTP和错题重点解析) 应用层简介 应用层的主要功能常见的应用层协议小林对于应用层通常的解释 网络应用模型 客户端-服务器模型(Client-Server Model, C/S) 特点优点缺点应用场景 对等网络模型(Peer-to…

IO流字符流(FileReader与FileWriter)

目录 FileReader 空参read方法 带参read方法👇 FileWriter void write(intc) 写出一个字符 void write(string str) 写出一个字符串 void write(string str,int off,int len) 写出一个字符串的一部分 void write(char[] cbuf) …

备战 清华大学 上机编程考试-冲刺前50%,倒数第5天

T1:多项式求和 小K最近刚刚习得了一种非常酷炫的多项式求和技巧,可以对某几类特殊的多项式进行运算。非常不幸的是,小K发现老师在布置作业时抄错了数据,导致一道题并不能用刚学的方法来解,于是希望你能帮忙写一个程序…

C语言 树与二叉树基础部分

树与二叉树基础部分 树的基础概念二叉树的性质二叉树的遍历前序遍历中序遍历后序遍历层序遍历根据遍历结果恢复二叉树 二叉树的创建第一种第二种 二叉树的其他典型操作查找指定元素(一般二叉树)二叉树的高度(深度)二叉树的拷贝二叉…

!力扣102. 二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] /*** Definition for…

大模型应用工程化过程

近年来,以人工智能为代表的新一代信息技术加速应用,特 别是基于大模型、大数据、大算力的 ChatGPT 的发布,标志着人 工智能技术取得里程碑式突破,推动科技创新进入新阶段。随着 大模型技术的迅猛发展和场景价值的不断涌现&#xf…

9.2 Go 接口的实现

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

Day44 代码随想录打卡|二叉树篇---找树左下角的值

题目(leecode T513): 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 方法:本题需要找二叉树左下角的值,因此该节点首先是在最后一行&#xff0…

搭建智慧互联网医院系统教学:源码解析与在线问诊APP开发

本篇文章,小编将以“源码解析与在线问诊APP开发”为切入点,详细介绍搭建智慧互联网医院系统的过程。 一、智慧互联网医院系统的架构设计 系统架构概述 -前端 -后端 -数据库 功能模块划分 -用户 -预约 -挂号 -问诊、 -病历 -管理 -药品 -配送…

Pytorch 从零实现 Transformer

前言 之前虽然了解过 Transformer 架构,但是没有自己实现过。 最近阅读 transformers 库中 Llama 模型结构,于是想试着亲手实现一个简单的 Transformer。 在实现过程中加深了理解,同时发现之前阅读 Llama 中一些错误的地方,因此…

【实战项目二】Python爬取豆瓣影评

目录 一、环境准备 二、编写代码 一、环境准备 pip install beautifulsoup4 pip intall lxml pip install requests我们需要爬取这些影评 二、编写代码 我们发现每个影评所在的div的class都相同,我们可以从这入手 from bs4 import BeautifulSoup import request…

Qwen2大模型微调入门实战(完整代码)

Qwen2是通义千问团队的开源大语言模型,由阿里云通义实验室研发。以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习大语言模型微调的入门任务。 指令微调是一种通过在由(指令,输出)对…

倩女幽魂手游攻略:云手机自动搬砖辅助教程!

《倩女幽魂》手游自问世以来一直备受玩家喜爱,其精美画面和丰富的游戏内容让人沉迷其中。而如今,借助VMOS云手机,玩家可以更轻松地进行搬砖,提升游戏体验。 一、准备工作 下载VMOS云手机: 在PC端或移动端下载并安装VM…

流程的控制

条件选择语句 我们一般将条件选择语句分为三类: 单条件双条件多条件 本篇文章将分开诉说着三类。 单条件 单条件的语法很简单: if (条件) {// 代码}条件这里我们需要注意下,可以向里写入两种: 布尔值布尔表达式 当然&…

Docker高级篇之Docker网络

文章目录 1. Docker Network简介2. Docker 网络模式3. Docker 网络模式之bridge4. Docker 网络模式之host5. Docker 网络模式之none6. Docker 网络模式之container7. Docker 网络模式之自定义网络模式 1. Docker Network简介 从Docker的架构和运作流程来看,Docker是…

计算机组成原理之指令寻址

一、顺序寻址 1、定长指令字结构 2、变长指令字结构 二、跳跃寻址 三、数据寻址 1、直接寻址 2、间接寻址 3、寄存器寻址 寄存器间接寻址 4、隐含寻址 5、立即寻址 6、偏移寻址 1、基址寻址 2、变址寻址 3、相对寻址

力扣199. 二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1,3,4]示例 2: 输入: [1,null,3] 输出: [1,3]示例 3: 输入: [] 输出: [] /*** Def…

语法分析!!!

一、实验题目 根据给定文法编写调试预测分析程序&#xff0c;对任意输入串用预测分析法进行语法分析。 二、实验目的 加深对预测分析法的理解。 三、实验内容 四、实验代码 #include <iostream> #include <stdio.h> #include <string> #include <…