1
00:00:00,790 --> 00:00:03,480
下一个概念,就是基数的概念
2
00:00:04,390 --> 00:00:11,560
cardinality,表示有限集合中元素的数量
3
00:00:12,200 --> 00:00:14,790
我们可以用一个井号
4
00:00:14,800 --> 00:00:18,320
在前面表示,123,三个
5
00:00:19,530 --> 00:00:23,710
但是你看,123集合作为元素存在的时候
6
00:00:23,720 --> 00:00:24,830
只有一个元素
7
00:00:25,200 --> 00:00:28,330
针对集合里面,只有一个元素
8
00:00:28,340 --> 00:00:30,010
这个元素就是一个集合
9
00:00:33,810 --> 00:00:38,510
我们看下一个,集合{1,3,2,3}有几个
10
00:00:38,640 --> 00:00:39,790
只有3个
11
00:00:39,800 --> 00:00:41,310
因为3是重复的
12
00:00:42,410 --> 00:00:47,140
只能算1个,这个是两个
13
00:00:47,150 --> 00:00:51,140
因为它里面是两个集合
14
00:00:51,580 --> 00:00:55,100
两个集合构成的一个集合
15
00:00:55,880 --> 00:00:57,750
所以里面元素是两个
16
00:00:57,760 --> 00:01:02,940
因为我们是根据最外面集合来算元素
17
00:01:04,170 --> 00:01:06,260
空集的元素,0个
18
00:01:07,990 --> 00:01:13,930
但是由空集组成的集合,元素是1个
19
00:01:14,060 --> 00:01:15,810
因为这里面有一个元素
20
00:01:15,820 --> 00:01:17,210
这个元素是空集
21
00:01:17,850 --> 00:01:18,960
这两个是不一样的
22
00:01:20,310 --> 00:01:23,230
空集构成的集合它不是空集
23
00:01:24,050 --> 00:01:25,280
它里面有一个元素
24
00:01:25,490 --> 00:01:26,800
这个元素是空集
25
00:01:31,090 --> 00:01:35,560
另外一个概念,就是一个单例的概念
26
00:01:36,050 --> 00:01:40,600
Singleton,单例集合的概念
27
00:01:41,420 --> 00:01:43,490
里面只有一个元素,比如42
28
00:01:44,030 --> 00:01:46,070
这是一个集合,单例集合
29
00:01:47,160 --> 00:01:49,200
42是里面的一个元素
30
00:01:49,890 --> 00:01:51,270
这两个要注意区别
31
00:01:55,450 --> 00:01:58,220
这是基数的概念
32
00:01:59,820 --> 00:02:01,450
下一个就是子集了
33
00:02:04,370 --> 00:02:05,530
集合的子集
34
00:02:07,410 --> 00:02:11,630
这个叫A包含于B
35
00:02:11,640 --> 00:02:15,560
A包含于B,或者说,B包含A,都可以
36
00:02:16,330 --> 00:02:21,490
A包含于B什么意思
37
00:02:21,500 --> 00:02:24,610
就是说A的每个元素都是B的元素
38
00:02:27,000 --> 00:02:28,020
一个元素
39
00:02:28,030 --> 00:02:29,660
如果属于A,那么,它必然
40
00:02:29,670 --> 00:02:31,840
属于B,那么这个时候
41
00:02:31,850 --> 00:02:33,280
我们把它称为
42
00:02:33,620 --> 00:02:36,540
A是B的子集subset
43
00:02:37,480 --> 00:02:40,500
或者说,B是A的超集,superset
44
00:02:44,410 --> 00:02:48,830
如果说,A包含于B
45
00:02:48,840 --> 00:02:51,080
但是A又不是B,因为每个元素
46
00:02:51,090 --> 00:02:52,560
都是它本身的子集
47
00:02:54,290 --> 00:02:55,710
但假设不是它自己
48
00:02:56,640 --> 00:02:58,830
除了它自己之外的其他子集
49
00:02:58,840 --> 00:03:00,420
我们叫真子集
50
00:03:01,740 --> 00:03:08,120
就是A包含于B
51
00:03:08,130 --> 00:03:11,320
但是A又不等于B,这种就叫真子集
52
00:03:11,330 --> 00:03:14,160
符号下面就
53
00:03:14,450 --> 00:03:24,410
没有那一杠,包含关系的一些特点
54
00:03:24,780 --> 00:03:27,740
A是A的子集
55
00:03:27,870 --> 00:03:30,540
集合本身是它自己的子集
56
00:03:31,310 --> 00:03:33,660
空集是所有集合的子集
57
00:03:38,200 --> 00:03:39,320
另外还有传递性
58
00:03:39,330 --> 00:03:43,060
A包含于B,而且B又包含于C
59
00:03:43,070 --> 00:03:46,530
那么A就被C包含
60
00:03:49,520 --> 00:03:50,190
相等性
61
00:03:51,290 --> 00:03:52,970
A等于B的话,意味着什么
62
00:03:52,980 --> 00:03:58,040
等价于A包含于B,同时B也
63
00:03:58,050 --> 00:04:02,270
包含于C(口误),这两个同时成立才可以
64
00:04:03,480 --> 00:04:04,430
B包含于A
1
00:00:01,530 --> 00:00:04,610
下一个概念就是集合的运算
2
00:00:06,730 --> 00:00:07,730
大家应该都知道
3
00:00:07,980 --> 00:00:11,870
并、交、叉
4
00:00:12,130 --> 00:00:16,780
并运算,就是属于A或者属于B的
5
00:00:17,350 --> 00:00:22,220
把两个集合里面的元素给并起来
6
00:00:22,430 --> 00:00:28,430
你有,或者我有,都可以
7
00:00:28,720 --> 00:00:32,650
交,把两个共同的元素给提炼出来
8
00:00:33,570 --> 00:00:40,040
x属于A而且x属于B
9
00:00:41,370 --> 00:00:43,810
差,x属于A,而且x不属于B
10
00:00:43,820 --> 00:00:46,320
相当于在A里面
11
00:00:46,330 --> 00:00:49,970
把跟B相同的部分给剔除掉
12
00:00:49,980 --> 00:00:53,760
你看这里,并
13
00:00:53,770 --> 00:00:56,780
这个方块是A,这个方块是B
14
00:00:57,030 --> 00:01:00,820
A并B就是把这两个合在一起了
15
00:01:01,230 --> 00:01:02,680
对吧
16
00:01:02,940 --> 00:01:09,920
A交B就是中间阴影的部分了
17
00:01:10,550 --> 00:01:11,430
共同的部分
18
00:01:13,300 --> 00:01:17,520
所以,A并B实际上可以看作
19
00:01:17,530 --> 00:01:19,360
A里面的元素
20
00:01:19,750 --> 00:01:21,160
加上B里的元素
21
00:01:23,160 --> 00:01:26,240
加在一起之后,再把共同的部分给减掉
22
00:01:26,250 --> 00:01:26,680
23
00:01:29,510 --> 00:01:33,100
因为共同的部分重复计了两次
24
00:01:34,780 --> 00:01:36,940
共同部分给清理掉
25
00:01:38,570 --> 00:01:39,520
让它不重复
26
00:01:40,310 --> 00:01:41,740
就得到A并B了
27
00:01:44,690 --> 00:01:46,320
A减B就是,你看
28
00:01:46,610 --> 00:01:49,460
这是A,这是B,A减B就是
29
00:01:49,990 --> 00:01:52,210
A把跟B相同的部分给干掉
30
00:01:52,630 --> 00:01:54,440
就剩下A的部分
31
00:01:55,090 --> 00:01:56,600
阴影部分就是我们的结果
32
00:02:00,290 --> 00:02:01,760
下一个叫对称差
33
00:02:03,470 --> 00:02:06,140
这里我们用一个除号来表达
34
00:02:06,150 --> 00:02:13,470
就是A减B,并,B减A
35
00:02:13,480 --> 00:02:18,420
A减B就是这个,把共同的刨掉
36
00:02:18,790 --> 00:02:21,210
然后,B减A,也共同刨掉
37
00:02:21,220 --> 00:02:25,460
就是说,把两个互相
38
00:02:27,170 --> 00:02:29,850
搞到没有交集之后,再把它并起来
39
00:02:31,690 --> 00:02:32,260
并起来
40
00:02:34,390 --> 00:02:37,220
中间这部分就没有了
41
00:02:37,820 --> 00:02:39,690
那么这个地方这个是有的
42
00:02:39,860 --> 00:02:40,930
在这里就没有了
43
00:02:40,940 --> 00:02:45,470
你减掉,剩下这一块
44
00:02:45,480 --> 00:02:46,870
你减掉,剩下这一块
45
00:02:46,880 --> 00:02:49,730
中间一部分大家都扣掉了,没有了
46
00:02:51,250 --> 00:02:51,970
对称差
47
00:02:53,530 --> 00:02:56,550
这个符号我们这里用一个除号来表达
48
00:02:56,560 --> 00:02:58,070
但是你也可以表达成这样
49
00:02:58,360 --> 00:03:01,560
有的表达一个加号加一个圈圈
50
00:03:01,900 --> 00:03:03,960
有的表达成一个三角形
51
00:03:03,970 --> 00:03:07,010
A三角形B,都有
52
00:03:07,580 --> 00:03:10,100
反正意思是那个意思就可以
53
00:03:13,420 --> 00:03:15,020
那么这些计算的话
54
00:03:16,160 --> 00:03:17,920
它们可以看作是封闭的
55
00:03:17,930 --> 00:03:21,330
因为它们的运算得到的
56
00:03:21,340 --> 00:03:22,690
都是集合
57
00:03:23,290 --> 00:03:24,400
得到集合
58
00:03:24,410 --> 00:03:27,810
这些运算是封闭的
59
00:03:29,560 --> 00:03:30,900
都在同一个
60
00:03:32,450 --> 00:03:33,520
如果说类型的话(指的是集合这个类型)
61
00:03:33,530 --> 00:03:38,820
就从一个类型里面来运算得到的结果
62
00:03:41,790 --> 00:03:43,980
下一个概念就是集合并的概念
63
00:03:43,990 --> 00:03:49,340
就是说,如果一个集合里面的元素是集合
64
00:03:51,920 --> 00:03:54,160
那么这个符号的意思就是
65
00:03:54,170 --> 00:03:58,510
把集合里面的各个
66
00:03:59,460 --> 00:04:03,010
作为元素的集合统一并起来
67
00:04:03,420 --> 00:04:09,060
比如说S等于{1,2,3},这一个集合
68
00:04:09,070 --> 00:04:10,020
234
69
00:04:10,700 --> 00:04:13,780
456,一共有三个元素
70
00:04:13,790 --> 00:04:16,760
每个元素都是一个集合
71
00:04:16,770 --> 00:04:20,510
并S,就是123并234并456
72
00:04:20,520 --> 00:04:22,910
就把这里面的元素给并起来
73
00:04:23,450 --> 00:04:24,800
把重复的去掉了
74
00:04:25,240 --> 00:04:26,620
就得到123456
75
00:04:28,900 --> 00:04:33,570
这样来,这是运算的符号
76
00:04:34,050 --> 00:04:36,120
并、交、差、对称差
77
00:04:38,220 --> 00:04:42,090
接下来就是运算的一些规律了
78
00:04:42,340 --> 00:04:46,300
跟前面逻辑运算是差不多的,也有什么
79
00:04:46,600 --> 00:04:47,100
交换律
80
00:04:48,110 --> 00:04:50,130
结合律、分配律
81
00:04:53,450 --> 00:04:58,800
这个地方,对称差
82
00:04:58,810 --> 00:05:00,600
这个也是符合交换律的
83
00:05:01,270 --> 00:05:06,070
因为它等于A减B然后并B减A
84
00:05:09,960 --> 00:05:12,390
A减B并B减A就是对称的
85
00:05:14,880 --> 00:05:16,600
但是哪个不是对称的
86
00:05:16,930 --> 00:05:18,180
差不是对称的
87
00:05:18,190 --> 00:05:20,840
A减B不能改过来B减A
88
00:05:20,970 --> 00:05:23,630
因为这两个得到结果不同
89
00:05:27,240 --> 00:05:31,790
也就是说,除了A减B,就是减号,差之外
90
00:05:31,960 --> 00:05:33,870
另外几个都符合交换律
91
00:05:34,490 --> 00:05:40,000
结合律好理解
92
00:05:40,010 --> 00:05:45,080
可以把它前后的括号换一下
93
00:05:45,850 --> 00:05:50,520
运算的顺序换一下,分配律
94
00:05:50,860 --> 00:05:54,450
跟逻辑运算差不多了
95
00:05:55,140 --> 00:05:58,940
并,里面与,是先把并给放进去
96
00:05:58,950 --> 00:06:00,440
然后与
97
00:06:01,410 --> 00:06:03,400
与然后并,一样的
98
00:06:04,080 --> 00:06:09,280
分配律,A并空集
99
00:06:09,410 --> 00:06:12,530
就是A,A与空集是空集
100
00:06:13,250 --> 00:06:17,400
A减空集就是A,空集减A就是空集
101
00:06:19,170 --> 00:06:26,550
A对称差,就是除以空集
102
00:06:27,340 --> 00:06:28,290
相当于什么
103
00:06:28,680 --> 00:06:33,530
A减空集并空集减A,A减空集就是A了
104
00:06:33,540 --> 00:06:34,890
空集减A就是空集了
105
00:06:34,900 --> 00:06:36,730
也就是A并空集
106
00:06:36,740 --> 00:06:41,250
就是A,涉及到空集运算的时候
107
00:06:41,540 --> 00:06:45,710
这些都可以这样来推导
108
00:06:50,860 --> 00:06:51,650
下一个概念
109
00:06:52,330 --> 00:06:54,160
就是幂集这个概念
110
00:06:54,950 --> 00:06:55,670
powerset
111
00:06:58,570 --> 00:07:03,070
幂集的意思就是说
112
00:07:03,080 --> 00:07:05,300
我们用这个符号P
113
00:07:07,290 --> 00:07:10,530
然后S,实际上就是S的函数
114
00:07:11,130 --> 00:07:14,920
P(S),也有写成
115
00:07:15,990 --> 00:07:23,370
指数的形式,2S,它下面是一个2
116
00:07:23,380 --> 00:07:27,070
表示这是S的幂集
117
00:07:27,800 --> 00:07:30,310
我们这里还是用一个括号来表达
118
00:07:36,290 --> 00:07:40,060
P(S)就是S的幂集
119
00:07:40,070 --> 00:07:44,560
就是S的所有的子集
120
00:07:44,570 --> 00:07:48,290
组成的集合,就是集合的集合
121
00:07:49,000 --> 00:07:49,740
这是幂集
122
00:07:54,420 --> 00:07:58,340
所以幂集它是子集的集合
123
00:07:59,500 --> 00:08:01,260
所以这个是等价的
124
00:08:02,940 --> 00:08:04,610
A是B的子集
125
00:08:05,870 --> 00:08:06,870
就等价于什么
126
00:08:06,880 --> 00:08:11,360
A是B的幂集的一个元素
127
00:08:11,370 --> 00:08:13,040
就A属于
128
00:08:13,510 --> 00:08:17,020
B的幂集
129
00:08:17,030 --> 00:08:19,220
A是B的幂集的一个元素
130
00:08:19,960 --> 00:08:22,730
等价于A是B的子集
131
00:08:22,740 --> 00:08:25,930
也就是说,它就把这种
132
00:08:26,990 --> 00:08:30,420
包含于,变成了一个元素的形式
133
00:08:31,510 --> 00:08:36,720
你是不是我的幂集的元素,这样的一个转换
134
00:08:41,410 --> 00:08:46,230
你看这里,这是V,123
135
00:08:47,190 --> 00:08:50,780
W,1,22,23是集合,4
136
00:08:52,630 --> 00:08:54,110
那么V的幂集
137
00:08:54,120 --> 00:08:57,310
就是123集合的
138
00:08:57,320 --> 00:08:59,230
所有的子集的集合了
139
00:08:59,510 --> 00:09:00,520
首先是空集
140
00:09:02,690 --> 00:09:02,980
141
00:09:02,990 --> 00:09:08,300
然后是,一个,两个,三个的子集
142
00:09:08,830 --> 00:09:11,620
然后12,13,23也是子集
143
00:09:11,630 --> 00:09:13,700
123自己也是子集
144
00:09:13,710 --> 00:09:17,330
W这个一样,空集
145
00:09:17,790 --> 00:09:22,740
一个个来,1,23,这是一个,4是一个
146
00:09:23,470 --> 00:09:25,270
再来,1跟23是一个
147
00:09:25,280 --> 00:09:26,570
1跟4是一个
148
00:09:26,810 --> 00:09:28,230
23跟4又是一个
149
00:09:28,820 --> 00:09:30,440
然后所有的又一个
150
00:09:34,380 --> 00:09:38,450
你看这是12345678
151
00:09:39,010 --> 00:09:40,760
这是12345678
152
00:09:41,390 --> 00:09:42,390
这是几个元素
153
00:09:42,920 --> 00:09:45,030
3个,3个
154
00:09:45,830 --> 00:09:51,570
所以幂集里面的基数等于2的n次方
155
00:09:51,780 --> 00:09:55,910
也就是说,你这个集合里面有几个元素
156
00:09:56,600 --> 00:10:00,160
那么你的幂集的元素就有几个(2相乘)
157
00:10:00,290 --> 00:10:01,920
或者说,你有几个子集
158
00:10:01,930 --> 00:10:03,190
2的n次方
159
00:10:03,870 --> 00:10:04,750
2的n次方个
160
00:10:05,040 --> 00:10:09,930
比如说,这里3个,幂集就有8个元素
161
00:10:11,370 --> 00:10:13,370
或者说,它就有8个子集
162
00:10:14,450 --> 00:10:15,240
怎么算出来
163
00:10:15,330 --> 00:10:18,540
通过多项式展开算出来
164
00:10:21,850 --> 00:10:26,990
你看这里,{2,3}集合就属于V的幂集
165
00:10:30,010 --> 00:10:32,770
{2,3}在这里,是它的元素
166
00:10:33,200 --> 00:10:34,500
等价于什么
167
00:10:35,350 --> 00:10:37,190
{2,3}是V的一个子集
168
00:10:37,200 --> 00:10:40,890
你看, 123,{2,3}是里面一个子集
169
00:10:45,180 --> 00:10:46,630
但是这个就不一样了
170
00:10:47,050 --> 00:10:52,980
{2,3}属于W,它是W集合的一个元素
171
00:10:57,180 --> 00:10:59,000
它不是子集,它是元素
172
00:11:02,310 --> 00:11:06,250
不能说P(W),它是W本身的一个元素
173
00:11:08,260 --> 00:11:11,420
哪个才是P(W)的元素
174
00:11:12,110 --> 00:11:15,390
{1,{2,3}}这个
175
00:11:15,400 --> 00:11:16,790
或者{2,3}上面再加一个
176
00:11:21,590 --> 00:11:22,540
这个,才是子集
177
00:11:23,340 --> 00:11:30,220
{2,3}是元素,这个属于P(W)的元素
178
00:11:30,530 --> 00:11:37,890
{1,{2,3}}组成的集合就是W的一个子集
179
00:11:38,260 --> 00:11:41,520
或者说,W的幂集的一个元素
180
00:11:43,420 --> 00:11:48,730
下面,空集的幂集有没有元素
181
00:11:48,860 --> 00:11:51,970
有的,幂集是子集的集合
182
00:11:52,450 --> 00:11:53,460
空集有没有子集
183
00:11:53,470 --> 00:11:55,810
有的,有它自己
184
00:11:56,050 --> 00:11:59,300
所以空集的幂集里面有一个元素
185
00:11:59,310 --> 00:12:00,220
就是空集
186
00:12:00,610 --> 00:12:02,360
也就是说,空集的幂集
187
00:12:03,320 --> 00:12:08,050
它的基数是1,它是有一个元素的
188
00:12:08,060 --> 00:12:09,690
空集里面元素是没有的,是0
189
00:12:10,280 --> 00:12:16,180
但是空集的幂集的元素是1
190
00:12:18,120 --> 00:12:20,090
这个也是符合我们
191
00:12:21,210 --> 00:12:22,880
你看,n这里,n等于0
192
00:12:23,400 --> 00:12:25,670
2的0次方就是1
193
00:12:32,260 --> 00:12:34,340
下一个概念,就是划分这个概念
194
00:12:35,220 --> 00:12:38,670
Partition,划分
195
00:12:38,680 --> 00:12:42,780
就是把一个集合
196
00:12:44,730 --> 00:12:45,750
划分成
197
00:12:46,520 --> 00:12:48,820
互不相交的非空子集
198
00:12:54,150 --> 00:13:03,850
刚才讲,P(S)就是幂集
199
00:13:04,420 --> 00:13:05,620
幂集里面是包含了
200
00:13:05,630 --> 00:13:09,510
所有的子集,的集合
201
00:13:12,340 --> 00:13:19,070
划分相当于从幂集里面挑出一些集合
202
00:13:19,740 --> 00:13:21,370
它们刚好凑起来
203
00:13:22,130 --> 00:13:29,370
刚好是拼凑成S
204
00:13:29,950 --> 00:13:31,550
如果S是一个非空集合
205
00:13:31,560 --> 00:13:33,830
那么P是S的划分
206
00:13:34,390 --> 00:13:37,230
当且仅当P是由互不相交的
207
00:13:37,240 --> 00:13:39,270
非空子集构成的集合
208
00:13:40,090 --> 00:13:41,360
并且它们的并集
209
00:13:41,900 --> 00:13:47,590
等于S,用形式化一点的表达
210
00:13:48,240 --> 00:13:51,300
就是P是S的划分
211
00:13:51,310 --> 00:13:57,750
等价于P是S的幂集的一个子集
212
00:13:59,210 --> 00:14:00,400
从幂集里面
213
00:14:00,410 --> 00:14:02,120
你看,幂集是这个
214
00:14:02,530 --> 00:14:04,600
也就是说,从这里面
215
00:14:05,650 --> 00:14:07,080
挑一些元素
216
00:14:08,080 --> 00:14:09,190
做成一个子集
217
00:14:12,770 --> 00:14:14,930
但是要把空集给去掉
218
00:14:16,010 --> 00:14:17,060
把空集给去掉
219
00:14:17,500 --> 00:14:22,720
不能挑空集
220
00:14:26,200 --> 00:14:32,470
而且,如果AB
221
00:14:32,940 --> 00:14:33,970
都是P的
222
00:14:33,980 --> 00:14:35,530
P的元素的话
223
00:14:35,940 --> 00:14:38,980
也就是说,都是S的子集
224
00:14:38,990 --> 00:14:42,600
那么两子集,这两个集合
225
00:14:44,450 --> 00:14:46,360
它们的交集必然是空的
226
00:14:47,540 --> 00:14:48,990
如果不是同一个的话
227
00:14:53,420 --> 00:14:54,410
这是第二点
228
00:14:54,420 --> 00:14:55,010
第三点
229
00:14:56,220 --> 00:15:04,000
所有的这些,P的并
230
00:15:04,630 --> 00:15:08,700
因为P就是一个子集的集合
231
00:15:09,080 --> 00:15:14,590
所以刚才我们说那个符号,就是集合的集合的并
232
00:15:15,210 --> 00:15:20,480
就是把P里面挑出来这些集合
233
00:15:22,230 --> 00:15:23,200
把它并起来
234
00:15:23,210 --> 00:15:28,130
刚好就是S,那么这个是比较严谨的
235
00:15:28,140 --> 00:15:30,510
形式的说法
236
00:15:30,760 --> 00:15:32,310
从形象上理解
237
00:15:32,320 --> 00:15:38,050
就是把它划分成互不相交的,1块1块的
238
00:15:39,110 --> 00:15:39,800
这样来,比如说
239
00:15:39,810 --> 00:15:43,570
你看,S假设是123456789
240
00:15:43,580 --> 00:15:44,130
一共9个元素
241
00:15:44,140 --> 00:15:44,570
242
00:15:45,180 --> 00:15:46,770
这个就是其中一个划分
243
00:15:46,780 --> 00:15:52,590
其中一个P,你看1是一个子集
244
00:15:53,650 --> 00:15:55,780
然后2,4是一个
245
00:15:56,170 --> 00:15:57,330
367是一个
246
00:15:57,690 --> 00:15:59,270
5是一个,89是一个
247
00:16:00,480 --> 00:16:01,780
248
00:16:01,790 --> 00:16:02,420
这是一个
249
00:16:03,670 --> 00:16:06,700
但不只是这个,很多个划分
250
00:16:06,710 --> 00:16:09,540
你要愿意你可以爱怎么分怎么分
251
00:16:09,910 --> 00:16:11,720
你把它分成9个都可以,1是一个
252
00:16:11,730 --> 00:16:13,810
2是一个,3是一个,4一个,5是一个
253
00:16:13,820 --> 00:16:14,380
6是一个
254
00:16:15,010 --> 00:16:15,460
都可以
255
00:16:16,130 --> 00:16:16,430
256
00:16:19,590 --> 00:16:23,730
划分是多样的
257
00:16:23,740 --> 00:16:27,680
你看,T集合有123,3个元素
258
00:16:28,190 --> 00:16:29,430
它的划分,这些都是的
259
00:16:29,440 --> 00:16:32,280
1,2,3分三个
260
00:16:33,110 --> 00:16:33,880
这是一种划分
261
00:16:34,540 --> 00:16:37,060
第二种是1,2是一个,3是一个
262
00:16:37,860 --> 00:16:38,020
263
00:16:38,840 --> 00:16:39,690
第三是什么
264
00:16:40,340 --> 00:16:41,650
1,2是一个,2是一个
265
00:16:42,860 --> 00:16:45,270
2,3是一个,1是一个,或者1,2,3整个
266
00:16:45,280 --> 00:16:50,460
就把它划分一整块
267
00:16:50,980 --> 00:16:52,370
就这样一个划分也可以的
268
00:16:56,520 --> 00:17:05,160
等于把它子集挑出来
269
00:17:05,750 --> 00:17:07,910
作为划分就行了
270
00:17:12,660 --> 00:17:19,610
这样来,也就是说,划分里面S的元素
271
00:17:21,410 --> 00:17:23,610
如果P是S的划分的话
272
00:17:23,620 --> 00:17:27,810
那么S的元素,每个元素出现
273
00:17:29,350 --> 00:17:31,950
而且仅出现在P的一个元素里面
274
00:17:33,230 --> 00:17:40,360
P就不能够有相交的
275
00:17:43,180 --> 00:17:45,810
里面的那个元素
276
00:17:46,060 --> 00:17:47,210
就不能相交
277
00:17:47,460 --> 00:17:49,490
因为里面元素是集合
278
00:17:50,040 --> 00:17:51,110
它就不能相交
279
00:17:52,240 --> 00:17:57,220
就不能有共同的元素,里面的元素是集合
280
00:17:57,390 --> 00:17:59,820
这些集合里面就不能有共同的元素了