计网仿真综合实验 实验十二

  • 实验十二 综合网络实验
    • 实验过程
      • IP配置说明
      • 参考连线
      • 配置OSPF使公司内部联通
        • 路由器R1的OSPF配置
        • 路由器R2的OSPF配置
        • 路由器R3的OSPF配置
        • R1、R2、R3的相关解释
        • 路由器R4的OSPF配置
        • 路由器R5的OSPF配置
        • 路由器R6的OSPF配置
        • R4、R5、R6解释:
      • 路由器R2的RIP配置
      • 路由器R7的RIP配置
        • 总结
    • OSPF Cost配置简要说明
      - 分公司
      • 代码配置和截图
    • 总公司与分公司跑BGP
    • 流量控制使 A 流走 R2->R4 B 流走 R3->R5
    • 路由引入,这里没有做过滤,需要注意的是一个邻居的一个方向只能调用一个路由策略,所有在过滤是使用过滤技术。
    • 过滤不让办事处的 B 流与分公司的 B 流互通
    • 静默接口不允许出现协议报文
    • 只传递本 AS 的路由
    • 按照实验指导书上面的内容就做完了,现在我们来检查各部分的情况进行截图。
    • 拓扑汇总
    • 实验踩坑说明和额外说明

实验十二 综合网络实验

实验过程

IP配置说明

[R1-GigabitEthernet0/0]ip address 10.0.0.1 255.255.255.252
[R1-GigabitEthernet0/1]ip address 10.0.0.5 255.255.255.252[R2-GigabitEthernet0/0]ip address 10.0.0.2 255.255.255.252
[R2-GigabitEthernet0/1]ip address 10.0.0.9 255.255.255.252
[R2-GigabitEthernet0/2]ip address 10.0.0.13 255.255.255.252
[R2-GigabitEthernet5/0]ip address 10.0.0.34 255.255.255.252[R3-GigabitEthernet0/0]ip address 10.0.0.10 255.255.255.252
[R3-GigabitEthernet0/1]ip address 10.0.0.10 255.255.255.252
[R3-GigabitEthernet0/2]ip address 10.0.0.17 255.255.255.252[R4-GigabitEthernet0/2]ip address 10.0.0.14 255.255.255.252
[R4-GigabitEthernet0/1]ip address 10.0.0.21 255.255.255.252
[R4-GigabitEthernet0/0]ip address 10.0.0.25 255.255.255.252[R5-GigabitEthernet0/2]ip address 10.0.0.18 255.255.255.252
[R5-GigabitEthernet0/0]ip address 10.0.0.29 255.255.255.252
[R5-GigabitEthernet0/1]ip address 10.0.0.22 255.255.255.252[R6-GigabitEthernet0/0]ip address 10.0.0.26 255.255.255.252
[R6-GigabitEthernet0/1]ip address 10.0.0.30 255.255.255.252ip address 10.0.0.33 255.255.255.252

参考连线

在这里插入图片描述

下面是我们实际的连线,一比一复刻

在这里插入图片描述

配置OSPF使公司内部联通

对三个路由器R1、R2、R3进行分析,展示它们在配置OSPF(Open Shortest Path First)协议时的细节。这些配置主要用于在公司内部实现网络互通。以下是对每个路由器配置的详细分析:

路由器R1的OSPF配置
sys
sysname R1ospf r 1.1.1.1
a 0
net 1.1.1.1 0.0.0.0
net 10.0.0.0 0.0.0.3
net 10.0.0.4 0.0.0.3

在这里插入图片描述

路由器R2的OSPF配置
sys
sysname R2
ospf r 2.2.2.2
a 0
net 2.2.2.2 0.0.0.0
net 10.0.0.0 0.0.0.3
net 10.0.0.8 0.0.0.3

在这里插入图片描述

路由器R3的OSPF配置
sys
sysname R3
ospf r 3.3.3.3
a 0
net 3.3.3.3 0.0.0.0
net 10.0.0.4 0.0.0.3
net 10.0.0.8 0.0.0.3
R1、R2、R3的相关解释
  • R1和R2通过网络10.0.0.0/30连接。
  • R1和R3通过网络10.0.0.4/30连接。
  • R2和R3通过网络10.0.0.8/30连接。
  • a 0的意思是进入area 0,进入区域0
路由器R4的OSPF配置
sys
sysname R4
ospf r 4.4.4.4
a 0
net 4.4.4.4 0.0.0.0
net 10.0.0.20 0.0.0.3
net 10.0.0.24 0.0.0.3

在这里插入图片描述

路由器R5的OSPF配置
sys
sysname R5
ospf r 5.5.5.5
a 0
net 5.5.5.5 0.0.0.0
net 10.0.0.20 0.0.0.3
net 10.0.0.28 0.0.0.3

在这里插入图片描述

路由器R6的OSPF配置
sys
sysname R6
ospf r 6.6.6.6
a 0
net 6.6.6.6 0.0.0.0
net 10.0.0.24 0.0.0.3
net 10.0.0.28 0.0.0.3

在这里插入图片描述

R4、R5、R6解释:
  • R4和R5通过网络10.0.0.20/30连接。
  • R4和R6通过网络10.0.0.24/30连接。
  • R5和R6通过网络10.0.0.28/30连接。

路由器R2的RIP配置

注意要在系统视图下面实现,即[ R2 ]而不是< R2 >

rip
v 2 
un summary
net 10.0.0.32

路由器R7的RIP配置

rip
v 2
un s
un summary
net 10.0.0.32 
net 192.168.2.0
net 172.16.2.0
总结
  • R2:
    • 启用RIP协议,使用版本2。
    • 禁用路由汇总。
    • 发布网络10.0.0.32。
  • R7:
    • 启用RIP协议,使用版本2。
    • 禁用路由汇总。
    • 发布网络10.0.0.32、192.168.2.0和172.16.2.0。。

OSPF Cost配置简要说明

  • R1

    • GigabitEthernet0/1接口的OSPF cost设为10。
    • GigabitEthernet0/0接口的OSPF cost设为20。
  • R2

    • GigabitEthernet0/0接口的OSPF cost设为20。
  • R3

    • GigabitEthernet0/0接口的OSPF cost设为10。
分公司
  • R4

    • GigabitEthernet0/1接口的OSPF cost设为20。
  • R5

    • GigabitEthernet0/0接口的OSPF cost设为10。
    • GigabitEthernet0/1接口的OSPF cost设为20。
  • R6

    • GigabitEthernet0/1接口的OSPF cost设为10。

代码配置和截图

# 总公司
[R1]interface g0/1
[R1-GigabitEthernet0/1]ospf cost 10
[R1-GigabitEthernet0/1]exit[R1]interface g0/0
[R1-GigabitEthernet0/0]ospf cost 20
[R1-GigabitEthernet0/0]exit[R2]interface g0/0
[R2-GigabitEthernet0/0]ospf cost 20
[R2-GigabitEthernet0/0]exit[R3]interface g0/0
[R3-GigabitEthernet0/0]ospf cost 10
[R3-GigabitEthernet0/0]exit分公司:
[R5]interface g0/0
[R5-GigabitEthernet0/0]ospf cost 10
[R5-GigabitEthernet0/0]exit[R5]interface g0/1
[R5-GigabitEthernet0/1]ospf cost 20
[R5-GigabitEthernet0/1]exit[R4]interface g0/1
[R4-GigabitEthernet0/1]ospf cost 20
[R4-GigabitEthernet0/1]exit[R6]interface g0/1
[R6-GigabitEthernet0/1]ospf cost 10
[R6-GigabitEthernet0/1]exit

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总公司与分公司跑BGP


# [R1输入]
bgp 65001
router-id 1.1.1.1
peer 2.2.2.2 as 65001
peer 3.3.3.3 as 65001
peer 2.2.2.2 connect-interface GigabitEthernet0/0
peer 3.3.3.3 connect-interface GigabitEthernet0/1
address-family ipv4 unicast
peer 2.2.2.2 enable
peer 3.3.3.3 enable
peer 2.2.2.2 ne
peer 3.3.3.3 ne

在这里插入图片描述

# [R2输入]
bgp 65001
router-id 2.2.2.2
peer 1.1.1.1 as 65001
peer 3.3.3.3 as 65001
peer 10.0.0.14 as 65002
peer 1.1.1.1 connect-interface GigabitEthernet0/0
peer 3.3.3.3 connect-interface GigabitEthernet0/1
peer 10.0.0.14 connect-interface GigabitEthernet0/2
address-family ipv4 unicast
peer 1.1.1.1 enable
peer 3.3.3.3 enable
peer 10.0.0.14 enable
peer 1.1.1.1 ne
peer 3.3.3.3 ne

在这里插入图片描述

# R3
bgp 65001
router-id 3.3.3.3
peer 1.1.1.1 as 65001
peer 2.2.2.2 as 65001
peer 10.0.0.18 as 65002
peer 1.1.1.1 connect-interface GigabitEthernet0/0
peer 2.2.2.2 connect-interface GigabitEthernet0/1
peer 10.0.0.18 connect-interface GigabitEthernet0/2
address-family ipv4 unicast
peer 1.1.1.1 enable
peer 2.2.2.2 enable
peer 10.0.0.18 enable
peer 1.1.1.1 ne
peer 2.2.2.2 ne

在这里插入图片描述

# R4
bgp 65002
router-id 4.4.4.4
peer 5.5.5.5 as 65002
peer 6.6.6.6 as 65002
peer 10.0.0.13 as 65001
peer 5.5.5.5 connect-interface GigabitEthernet0/1
peer 6.6.6.6 connect-interface GigabitEthernet0/0
peer 10.0.0.13 connect-interface GigabitEthernet0/2
address-family ipv4 unicast
peer 5.5.5.5 enable
peer 6.6.6.6 enable
peer 10.0.0.13 enable
peer 5.5.5.5 ne
peer 6.6.6.6 ne

在这里插入图片描述

# R5
bgp 65002
router-id 5.5.5.5
peer 5.5.5.5 as 65002
peer 6.6.6.6 as 65002
peer 10.0.0.17 as 65001
peer 4.4.4.4 connect-interface GigabitEthernet0/1
peer 6.6.6.6 connect-interface GigabitEthernet0/0
peer 10.0.0.17 connect-interface GigabitEthernet0/2
address-family ipv4 unicast
peer 4.4.4.4 enable
peer 6.6.6.6 enable
peer 10.0.0.17 enable
peer 4.4.4.4 ne
peer 6.6.6.6 ne

在这里插入图片描述

# R6
bgp 65002
router-id 6.6.6.6
peer 4.4.4.4 as 65002
peer 5.5.5.5 as 65002
peer 4.4.4.4 connect-interface GigabitEthernet0/0
peer 5.5.5.5 connect-interface GigabitEthernet0/1
address-family ipv4 unicast
peer 4.4.4.4 enable
peer 5.5.5.5 enable
peer 4.4.4.4 ne
peer 5.5.5.5 ne

在这里插入图片描述

流量控制使 A 流走 R2->R4 B 流走 R3->R5

[R2]acl ba 2000
[R2-acl-ipv4-basic-2000]ru per s 172.16.0.0 0.0.0.255
The rule already exists.
[R2-acl-ipv4-basic-2000]exit
[R2]route-policy bl per node 10
You are modifying an existing routing policy node.
[R2-route-policy-bl-10]if-match ip add acl 2000
[R2-route-policy-bl-10]apply as-path 200
[R2-route-policy-bl-10]exit
[R2]route-policy bl per node 20
You are modifying an existing routing policy node.
[R2-route-policy-bl-20]exit
[R2]bgp 65001
[R2-bgp-default]address-family ipv4 unicast
[R2-bgp-default-ipv4]peer 10.0.0.14 route-policy bl ex
[R2-bgp-default-ipv4]quit

在这里插入图片描述

[R4]acl ba 2000
[R4-acl-ipv4-basic-2000]ru per s 172.16.0.0 0.0.0.255
[R4-acl-ipv4-basic-2000]exit
[R4]route-policy bl per node 10
Routing policy node created.
[R4-route-policy-bl-10]if-match ip add acl 2000
[R4-route-policy-bl-10]apply as-path 200
[R4-route-policy-bl-10]exit
[R4]route-policy bl per node 20
Routing policy node created.
[R4-route-policy-bl-20]exit
[R4]bgp 65002
[R4-bgp-default]address-family ipv4 unicast
[R4-bgp-default-ipv4]peer 10.0.0.13 route-policy bl ex
[R4-bgp-default-ipv4]quit
[R3]acl ba 2000
[R3-acl-ipv4-basic-2000]ru per s 192.168.0.0 0.0.0.255
[R3-acl-ipv4-basic-2000]quit
[R3]route-policy al per node 10
Routing policy node created.
[R3-route-policy-al-10]if-match ip add acl 2000
[R3-route-policy-al-10]apply as-path 100
[R3-route-policy-al-10]quit
[R3]route-policy al per node 20
Routing policy node created.
[R3-route-policy-al-20]quit
[R3]bgp 65001
[R3-bgp-default]address-family ipv4 unicast
[R3-bgp-default-ipv4]peer 10.0.0.18 route-policy bl ex
[R3-bgp-default-ipv4]quit
[R3-bgp-default]quit

在这里插入图片描述

acl ba 2000
ru per s 192.168.0.0 0.0.0.255
quit
route-policy al per node 10
if-match ip add acl 2000
apply as-path 100
quit
route-policy al per node 20
quit
bgp 65001
address-family ipv4 unicast
peer 10.0.0.18 route-policy bl ex

在这里插入图片描述

路由引入,这里没有做过滤,需要注意的是一个邻居的一个方向只能调用一个路由策略,所有在过滤是使用过滤技术。

[R2-bgp-default-ipv4]import-route rip
[R2]rip
[R2-rip-1]import-route bgp
[R2-rip-1]quit

在这里插入图片描述

过滤不让办事处的 B 流与分公司的 B 流互通

[R2]acl basic 2001
[R2-acl-ipv4-basic-2001]rule 0 deny source 172.16.1.0 0.0.0.255
[R2-acl-ipv4-basic-2001]rule 5 permit
[R2]int g5/0
[R2-GigabitEthernet5/0]packet-filter 2001 outbound
[R2]acl basic 2002
[R2-acl-ipv4-basic-2002]rule 0 deny source 172.16.2.0 0.0.0.255
[R2-acl-ipv4-basic-2002]rule 5 permit
[R2-acl-ipv4-basic-2002]quit

在这里插入图片描述

<R3>sys
System View: return to User View with Ctrl+Z.
[R3]acl basic 2001
[R3-acl-ipv4-basic-2001]rule 0 deny source 172.16.2.0 0.0.0.255
[R3-acl-ipv4-basic-2001]rule 5 permit
[R3-acl-ipv4-basic-2001]quit
[R3]bgp 65001
[R3-bgp-default]address-family ipv4 unicast
[R3-bgp-default-ipv4]peer 10.0.0.18 filter-policy 2001 export
[R3-bgp-default-ipv4]quit
[R3-bgp-default]quit

在这里插入图片描述

静默接口不允许出现协议报文

···
[R2-rip-1]silent-interface g0/0
[R2-rip-1]silent-interface g0/1
[R2-rip-1]silent-interface g0/2
···

在这里插入图片描述

只传递本 AS 的路由

···
[R2]ip as-path 1 permit ^$
[R2]bgp 65001
[R2-bgp-default]address-family ipv4
[R2-bgp-default-ipv4]peer 10.0.0.14 as-path-acl 1 export
[R2-bgp-default-ipv4]quit
[R2-bgp-default]quit

[R3]ip as-path 1 permit ^$
[R3]bgp 65001
[R3-bgp-default]address-family ipv4
[R3-bgp-default-ipv4]peer 10.0.0.18 as-path-acl 1 export
[R3-bgp-default-ipv4]quit
[R3-bgp-default]quit

···在这里插入图片描述

在这里插入图片描述

按照实验指导书上面的内容就做完了,现在我们来检查各部分的情况进行截图。

检查OSPF PEER(R2&R6):
在这里插入图片描述
在这里插入图片描述

一切正常!

拓扑汇总

在这里插入图片描述

实验踩坑说明和额外说明

在实验过程中经常出现指导书的指令输入进去虚拟机但是经常报错的时候,有可能是以下三个原因造成的:

  • 它给的指令就是错误的,这个分几种情况讨论
    • 指令简写了
    • 指令扩写了
    • 指令压根不存在,没有更新
  • 我们的IP地址没有配,比如我是做到陪完BGP的时候感到非常奇怪,为什么一直没有连接上?后来我发现我没有把每一个接口都分配地址,我直接略过了流程的第一步,导致我的网络在后面不起反应
  • 在错误的街口下操作。比如原本要在[R2-XXX-XXX]操作的,但是我们一直在[R2]下操作,当然会一直报错了。
  • 通过这次实验,我极大程度上掌握了H3C的路由器配置,这对我来说虽然痛苦但是很有收获。
    46903)]

按照实验指导书上面的内容就做完了,现在我们来检查各部分的情况进行截图。

检查OSPF PEER(R2&R6):
[外链图片转存中…(img-SwIzoGlw-1717695746903)]
[外链图片转存中…(img-MiHZC6XW-1717695746903)]
一切正常!

拓扑汇总

[外链图片转存中…(img-A0NZleeK-1717695746903)]

实验踩坑说明和额外说明

在实验过程中经常出现指导书的指令输入进去虚拟机但是经常报错的时候,有可能是以下三个原因造成的:

  • 它给的指令就是错误的,这个分几种情况讨论
    • 指令简写了
    • 指令扩写了
    • 指令压根不存在,没有更新
  • 我们的IP地址没有配,比如我是做到陪完BGP的时候感到非常奇怪,为什么一直没有连接上?后来我发现我没有把每一个接口都分配地址,我直接略过了流程的第一步,导致我的网络在后面不起反应
  • 在错误的街口下操作。比如原本要在[R2-XXX-XXX]操作的,但是我们一直在[R2]下操作,当然会一直报错了。
  • 通过这次实验,我极大程度上掌握了H3C的路由器配置,这对我来说虽然痛苦但是很有收获。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25092.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MicroPython esp32 连接wifi 配网

整体流程&#xff1a; 1&#xff09;开启STA 和 AP 模式 2&#xff09;扫描周围wifi 保存在 变量 wifi_list&#xff08;后面要用到&#xff09; 3) 尝试STA模式连接Wifi&#xff0c;并查寻状态。 4) 如果STA 无法连网&#xff0c;就用AP模式&#xff0c;创建热点。 5&a…

【lesson1】第三方库(jsoncpp,bundle, httplib)的介绍和使用

文章目录 jsoncpp库json 认识jsoncpp 认识jsoncpp 实现序列化jsoncpp 实现反序列化 bundle库bundle库实现文件压缩bundle库实现文件解压缩 httplib 库httplib 库搭建简单服务器httplib库搭建简单客户端 jsoncpp库 json 认识 json 是一种数据交换格式&#xff0c;采用完全独立…

【Vscode配置java环境并配置stringboot】

1.VSCODE配置JAVA环境 参考这篇文章配置JAVA环境&#xff1a;连接 java版本&#xff0c;我是win11系统,我下载的JAVA安装版本是下面&#xff0c;是最新版的&#xff1a; 配置环境&#xff1a;步骤很简单&#xff0c;就是向系统环境变量中添加路径&#xff0c;参考上面文章中的…

基于学习模型的可学习小波变换方法(Pytorch)

首先以图像编码为例进行说明。 图像编码是一个复杂的系统&#xff0c;通常包含多个模块&#xff0c;其中变换模块具有重要作用。小波变换在图像编码领域得到了广泛的应用&#xff0c;例如著名的JPEG 2000就是一种小波图像编码方法。然而&#xff0c;现阶段的小波图像编码方法与…

htb-window-1-legacy-smb

nmap smb-vuln-ms08-067 py文件测试失败 msf 漏洞定位 反弹 获取flag

【Oracle篇】rman全库异机恢复:从单机环境到RAC测试环境的转移(第五篇,总共八篇)

&#x1f4ab;《博主介绍》&#xff1a;✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ &#x1f4ab;《擅长领域》&#xff1a;✌️擅长Oracle、MySQL、SQLserver、阿里云AnalyticDB for MySQL(分布式数据仓库)、Linux&#xff0c;也在扩展大数据方向的知识面✌️…

一文学会Spring 实现事务,事务的隔离级别以及事务的传播机制

目录 一.Spring (Spring Boot) 实现事务 1.通过代码的方式手动实现事务 (手动档的车) 2.通过注解的方式实现声明式事务 (自动挡的车) 二.事务的4大特性(ACID) 三.事务的隔离级别 ①Mysql的事务隔离级别: ②Spring的事务隔离级别: 四.事务的传播机制 ①事务传播机制的概…

验证码案例

目录 前言 一、Hutool工具介绍 1.1 Maven 1.2 介绍 1.3 实现类 二、验证码案例 2.1 需求 2.2 约定前后端交互接口 2.2.1 需求分析 2.2.2 接口定义 2.3 后端生成验证码 2.4 前端接收验证码图片 2.5 后端校验验证码 2.6 前端校验验证码 2.7 后端完整代码 前言…

基于可解释性深度学习的马铃薯叶病害检测

数据集来自kaggle文章&#xff0c;代码较为简单。 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)# Input data files are available in the read-only "../input/" directory # For example, runni…

快团团供货大团长如何查看帮卖团长的订单?

一、功能说明 可以看到团购中每个帮卖团长帮卖产生的订单 二、具体设置方法 1、小程序端如何操作&#xff1f; 在团购页面中&#xff0c;点击订单管理&#xff0c;在这里可以选择全部团长订单&#xff0c;我的团订单&#xff0c;和帮卖团长的帮卖订单。 2、PC端如何操作&am…

ssm616基于vue.js的购物商场的设计与实现+vue【已测试】

前言&#xff1a;&#x1f469;‍&#x1f4bb; 计算机行业的同仁们&#xff0c;大家好&#xff01;作为专注于Java领域多年的开发者&#xff0c;我非常理解实践案例的重要性。以下是一些我认为有助于提升你们技能的资源&#xff1a; &#x1f469;‍&#x1f4bb; SpringBoot…

【基于C++与OpenCV实现魔方图像识别和还原算法】施工总览图

文章目录 主要效果展示思维导图魔方还原算法 本系列博客长期更新&#xff0c;分为两大部分 OpenCV实现魔方六面识别 C编写科先巴二阶段还原算法实现三阶魔方的还原 主要效果展示 摄像头识别六面 3D图像构建&#xff0c;提供还原公式 动画演示还原过程 思维导图 魔方还原算法 参…

达梦8 开启物理逻辑日志对系统的影响

物理逻辑日志&#xff0c;是按照特定的格式存储的服务器的逻辑操作&#xff0c;专门用于 DBMS_LOGMNR 包挖掘获取数据库系统的历史执行语句。当开启记录物理逻辑日志的功能时&#xff0c;这部分日志内 容会被存储在重做日志文件中。 要开启物理逻辑日志的功能&#xff0c;需要…

社区物资交易互助平台的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;基础数据管理&#xff0c;论坛管理&#xff0c;公告信息管理 前台账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;论坛&#xff0c;求助留言板&#xff0c;公…

SQL Chat:从SQL到SPEAKL的数据库操作新纪元

引言 SQL Chat是一款创新的、对话式的SQL客户端工具。 它采用自然语言处理技术&#xff0c;让你能够像与人交流一样&#xff0c;通过日常对话的形式对数据库执行查询、修改、创建及删除操作 极大地简化了数据库管理流程&#xff0c;提升了数据交互的直观性和效率。 在这个框…

反AI浪潮中的新机遇:Cara艺术社区异军突起

近日,一个名为Cara的艺术社区在网络上迅速走红,其独特的反AI定位吸引了大量创意人士。在AI技术日益普及的今天,Cara社区反其道而行之,致力于打造一个无AI侵害的创作和交流环境。这一创新模式不仅赢得了艺术家的青睐,也为国内创业者提供了新的思考角度。 一、精准定位,守…

C++ list链表的使用和简单模拟实现

目录 前言 1. list的简介 2.list讲解和模拟实现 2.1 默认构造函数和push_back函数 2.2 迭代器实现 2.2.1 非const正向迭代器 2.2.2 const正向迭代器 2.2.3 反向迭代器 2.3 插入删除函数 2.3.1 insert和erase 2.3.2 push_back pop_back push_front pop_front 2.4 构…

[word] word如何清除超链接 #媒体#笔记#知识分享

word如何清除超链接 办公中&#xff0c;少不了使用word&#xff0c;这个是大家必备的软件&#xff0c;今天给大家分享下word如何清除超链接的操作办法&#xff0c;一起来学习下吧&#xff01; 1、清除所有超链接 按下组合键CtrlshiftF9&#xff0c;就可以将网上复制带有超链…

《软件定义安全》之三:用软件定义的理念做安全

第3章 用软件定义的理念做安全 1.不进则退&#xff0c;传统安全回到“石器时代” 1.1 企业业务和IT基础设施的变化 随着企业办公环境变得便利&#xff0c;以及对降低成本的天然需求&#xff0c;企业始终追求IT集成设施的性价比、灵活性、稳定性和开放性。而云计算、移动办公…

pytorch 加权CE_loss实现(语义分割中的类不平衡使用)

加权CE_loss和BCE_loss稍有不同 1.标签为long类型&#xff0c;BCE标签为float类型 2.当reduction为mean时计算每个像素点的损失的平均&#xff0c;BCE除以像素数得到平均值&#xff0c;CE除以像素对应的权重之和得到平均值。 参数配置torch.nn.CrossEntropyLoss(weightNone,…