INT202 例题

算法复杂度

  1. O(n):表示算法的渐进上界。如果一个算法的运行时间是O(n),那么它的运行时间最多与输入规模n成正比。换句话说,当输入规模n增加时,算法的运行时间不会超过某个常数倍的n。比如,如果一个算法的时间复杂度是O(n),那么它的运行时间可能是3n,5n,100n等。

  2. Ω(n):表示算法的渐进下界。如果一个算法的运行时间是Ω(n),那么它的运行时间至少与输入规模n成正比。换句话说,当输入规模n增加时,算法的运行时间不会比某个常数倍的n小。比如,如果一个算法的时间复杂度是Ω(n),那么它的运行时间可能是n,2n,100n等。

  3. Θ(n):表示算法的紧密界限。如果一个算法的运行时间是Θ(n),那么它的运行时间与输入规模n成正比,并且上界和下界是相同的。换句话说,当输入规模n增加时,算法的运行时间将以线性方式增长。比如,如果一个算法的时间复杂度是Θ(n),那么它的运行时间可能是3n,n,100n等,但是不会超过某个常数倍的n。

单纯判断算式

 e.g1

e.g2

e.g3

e.g4

 C, 应该是O(n^2)

e.g5

A

 一般的算法复杂度

e.g1

*

e.g2*

是这样的,用n^2进行遍历,然后n进行计算,乘起来就是n^3

e.g3

e.g4*

注意第二题,log(a)+log(b) = log(ab) 我反正忘了哈哈哈哈哈

e.g5 summation表达*

递归

e.g1*

后缀运算

主要考察的是栈

注意,减号的话是栈[-2]- 栈[-1]

 e.g1

(1)

(2)

(3)

e.g2

e.g3

二叉树

一个好用的数据可视化网站Data Structure Visualization

节点深度 O(n)

树深度O(n)

查找O(n)(二分法)

遍历 O(n)

pre order 前序:左右

in order中序:左

post order 后序:左右

e.g1根据遍历绘制树

 

Binary search tree 二叉搜索树

二叉搜索树是一种特殊的二叉树,具有以下性质:

对于每个节点 NNN:
所有左子树节点的值都小于或等于节点 N的值
所有右子树节点的值都大于节点 N的值

查找 O(logn)-O(n)

e.g1 节点能构成多少个二叉树

用这个卡塔兰公式得

. - 力扣(LeetCode)

B

0/3 =5

1/2 =2

2/1 = 2

3/0 = 5

5+2+2+5=14

 AVL tree 平衡二叉树

Height-Balance属性: 对于任何节点n, n的左右子树的高度最多相差1

All operations (search, insertion, and removal) on an AVL tree with n elements can be performed in O(log n)time

e.g1

是的,左右节点响相差不超过1

添加节点O(log n)

是在树枝的叶节点添加,再转上去

集合进阶-11数据结构(平衡二叉树旋转机制)_哔哩哔哩_bilibili

右边多了左旋,左边多了右旋

简单情况:

以左旋为例:

 1)以不平衡点节点作为支点

2)把支点左旋降级,变成左子节点,晋升原来右子节点

复杂情况:

1)以不平衡点作为支点

2)将根节点右侧往左拉

3)原先的右子节点变成新的父节点,并把多余的左子节点出让,给已经降级的根节点当右子节点

四种情况:

  • 左-左(LL)失衡:右旋。
  • 右-右(RR)失衡:左旋。
  • 左-右(LR)失衡:先左旋后右旋。
  • 右-左(RL)失衡:先右旋后左旋。

e.g1 插入节点

插入节点后检测平衡,删除节点后面的节点顶替后检查平衡

 

e.g3 构建AVL

(2,4)树

has height O(logn)

查找 O(logn)

(2,4)树(也称为2-4树或2-3-4树)是一种多路搜索树,具有以下属性:

节点大小属性:每个内部节点最多有四个子节点

深度属性:所有外部节点具有相同的深度

根据子节点的数量,(2,4)树的内部节点被称为2节点、3节点或4节点

注意,相同的元素产生的(2,4)树可能会不一样,取决于节点插入的顺序

e.g1 树高O(logn)

增O(logn)

e.g1

添加节点17

删O(logn)

e.g2增/删*

Heap 堆

【从堆的定义到优先队列、堆排序】 10分钟看懂必考的数据结构——堆_哔哩哔哩_bilibili

堆是一棵二叉树,在其内部节点上存储键,并满足以下属性:对于每个内部节点v,除了根节点key(v) ≥key(parent(v))

 •节点中的键。
•父键不大于子键。
数组表示。
•索引从1开始。
•按等级顺序获取节点。

For any given node at position i:

•    Its Left Child is at [2*i] if available.
•    Its Right Child is at [2*i+1] if available.
•    Its Parent Node is at [⌊i/2⌋] if available.

因此,堆可以用数组表示,因为堆的下标和内容是一一对应的

注意,同[2,4]树一样,同一组数可能形成不同的堆

完全二叉树?

没有左子树不能有右子树
上一层没有铺满,不能有下一层

优先队列

堆是优先级队列的一种实现,对于插入和删除都是有效的。

新的元素插入队列,弹出最小/最大元素O(logn)

可以进行排序,将队列的元素依次弹出

max heap 大根堆,min heap 小根堆

 

 e.g1

.

e.g2

C

上/下滤 O(logn)

Up-heap bubbling 上滤

上滤用于插入新元素并维护堆的性质,将新元素逐级向上移动以确保其在正确的位置。

Down-heap bubbling 下滤

下滤用于删除堆顶元素或修改堆顶元素后,重新调整堆的结构,将堆顶元素逐级向下移动以确保其在正确的位置。

注意在堆中,通常对于节点的下沉操作是有方向性的。对于最大堆(Max Heap),节点的下沉操作是沿着较大的子节点方向进行的,类似地,对于最小堆(Min Heap),节点的下沉操作是沿着较小的子节点方向进行的。

建堆

1)从叶节点插--上滤O(nlogn)

2) 先把数组中的数依次插入堆,然后再对每个父节点进行下率O(n)

(个人感觉考试的时候还是写上滤会清楚一些)

e.g1

堆排序O(nlogn)

堆顶元素弹出后用最后一个元素堆叠到堆顶,然后下滤

大根堆下滤后变成小根堆,排序完是正序

小根堆下滤后变成大根堆,排序完是倒序

Lec8 分治法 Divide and conquer

分治法_哔哩哔哩_bilibili

将一个规模为n的问题u分解为k个规模为较小的子问题,子问题相互独立且与原问题相同,递归地求解这些子问题,然后利用子问题的解合并构造出原问题的解

设计:分解(Divide);递归求解(Conquer);合并(Combine)

分析:

1.建立递归方程T(n) = aT(n/b)+f(n)

2.求解递归方程T(n)

Sort

MergeSort

QuickSort

Master Method 主定理

e.g1 case1

直接套公式

我写的

标答:

e.g2 case2

直接套公式

我写的

标答

e.g3 case3

 标答

e.g4 注意lgn有坑!*****

 标答

e.g5 同e.g4

e.g6***不符合Master method

Matrix Multiplication 矩阵乘法???(暂时搁)

Counting inversion???(暂时搁)

Lec9 最优化问题

Knapsack 背包问题

 fractional 背包

e.g1

01背包

0/1背包问题-动态规划 Knapsack_problem Dynamic Programming_哔哩哔哩_bilibili

https://alchemist-al.com/algorithms/knapsack-problem

e.g1 

C

e.g2

我做的,我习惯先按照重量排序一下再算

标答

Interval Scheduling 区间调度(暂时搁置)

动态规划——区间DP_哔哩哔哩_bilibili

 大题***

Lec10 Graph

A graph𝐺=𝑉,𝐸consists of a set of vertices (nodes) V and a set of edges E, where each 𝑒∈𝐸 is specified by a pair of vertices 𝑢,𝑣∈𝑉

一些术语

End vertices:一条边的顶点

Edges incident:一个顶点相邻的边

Adjacent vertices:相邻的顶点

Degree:是指一个顶点连接的边的数量

Path:交替的顶点和边的序列,从顶点开始,以顶点结尾,每条边的前面和后面都有它的sendpoints 

Simple Path:所有顶点和边都不相同的路径

subgraph:子图

acyclic graph: 没有 cycle的图。树是相互连接的acyclic graph

Directed acyclic graphs 有向无环图称为dag。不可能通过遍历这些边回到同一个节点。

  • 最小生成树:用于找到一个图中连接所有顶点的最小权重的树。常用的算法包括Prim算法和Kruskal算法。这些算法主要关注于连接所有顶点,而不是特定的起点和终点。

  • 最短路径:用于找到图中从一个顶点到另一个顶点的最短路径。常用的算法包括Dijkstra算法和Bellman-Ford算法。这些算法主要关注于找到从一个指定起点到一个指定终点的最短路径。

Dijkstra

记录总路径,当然是要从最短的来s

我自己做的

标答

Bellman-Ford暂时没有例题

Kruskal

从最短的边开始选逐渐选到大边

我自己做的

标答

Prim’s algorithm 找最小生成树

1.选取权值最小边的其中一个顶点作为起始点。
2.找到离当前顶点权值最小的边,并记录该顶点为已选择。
3.重复第二步,直到找到所有顶点,就找到了图的最小生成树。

e.g1

自己写的

标答

e.g2

 

e.g3

 BFS 定理证明

要是考试考这种证明我直接表演一个暴毙!

sol

Lec11 Flow 流

  • 增广路径(Augmenting Path):

    从起点s到t的简单路径,其中不能有回路
  • 剩余网络(Residual Network)

    • 剩余网络是在一个流网络中,根据当前流量情况所生成的一个新的网络。这个网络中的边表示原网络中的边上还能承载的额外流量。
    • 对于每条边,我们可以通过减去流量(已经通过的流量)来得到该边的剩余容量。如果一条边的剩余容量大于 0,则在剩余网络中存在一条对应的边,表示从该边可以继续传送流量。

 Ford-Fulkerson Algorithm

1.先找到augmenting path

2. 添加backward path

e.g1

BFS 的逐层遍历特性确保了每一层的节点在下一层的节点访问前都被访问

e.g2*

 e.g3

e.g4

 

Min-cut

13-5: 最小割 Min-Cut_哔哩哔哩_bilibili

把原有集合分割成两个部分,Min cut是让总割断的水管最小,让水无法流往终点

注意,最小割不唯一

最大流最小割问题:最大流的流量等于最小割的容量

Lec13 Modular-Arithmetic

感觉Lec13和Lec14都能看这个我们的《密码学的数学基础》到底都介绍哪些内容,难不难_哔哩哔哩_bilibili

首先有个很重要的概念 x(mod y) 这种形式表示的是x除以y得到的余数 

Euclidean algorithm

这个方法也叫辗转相除法,用来计算两个数的最大公因数

欧几里得演算法(辗转相除法)_哔哩哔哩_bilibili 这个讲的很好的

拿大数/小数直到没有余数为止

e.g1

e.g2

Extend Euclidean 拓展欧几里得/广义欧几里得

用欧几里得计算中每一步的出来的余数和商,用于计算sa +tb = gcd(a,b)中的s和t

r = a - c*b,然后通过前面的式子把a和b换掉

e.g1

e.g2

e.g3

e.g4

我做的

标答(写的好复杂噢)

Multiplicative Inverse 乘法逆元

乘法逆元在数论和抽象代数中是一个重要的概念,特别是在模运算(模算术)中有广泛应用。给定一个整数 a和一个模数 m,如果存在一个整数 x使得

a ⋅ x ≡ 1(mod m)

怎么找b在a乘法逆元:

1)先找到as + bt = 1 中的s和t(用拓展欧几里得)

所以ab互质是充要条件,充要条件哈

2)t可能得到一个负数,但是可以通过  t ≡ u(mod m)

这个u就是最终答案

e.g1

e.g2 

标答

Liner congruence

模运算的性质

 

 e.g1**

我自己写的

老师标答

e.g2**

Fast Modular Exponentiation**

从前往后加

e.g1

 彼阳的ppt写的变来变去的搞得我整了老半天,就不放老师ppt上的了,变你🐎呢推了我一个小时结果发现原来很简单

Euler's Theorem

ϕ是一个数学函数,用来计算小于等于某个正整数 n 的正整数中,与 n 互质的数的个数

这里p是质数↑

e.g1


 

e.g2 

这题是乘法逆元和欧拉定理的综合考察

sol

费马小定理********

e.g1

RSA 非对称加密

【RSA加密算法】| RSA加密过程详解 | 公钥加密| 密码学| 信息安全|_哔哩哔哩_bilibili

public modulus(公钥模数),是pq的乘积

很好的视频,使我的大脑旋转

e.g1

e=3和p=17,q=23 是公钥,求私钥d

e.g2

老师标答

e.g3 

e.g4

Lec15 P,NP

期末复习的时候看到这个老师的视频,醍醐灌顶了属于是13.1 NP问题概述_哔哩哔哩_bilibili

刘老师,你学学人家

P: P类问题是指可以在多项式时间内(即时间复杂度为多项式函数的时间内)解决的问题。

NP:NP类问题是指能够在多项式时间内验证其解的问题。即使找到一个解可能很难,但一旦有了一个解,验证其正确性可以在多项式时间内完成。因为P类问题能在多项式时间内验证所以P问题是NP问题,但是NP问题不一定是P问题

最优化问题(Optimization)转化成判定性问题

NP-complete: NP中最难的问题,所有NP都可以规约(reducibility,实例对应,输出一致,传递)到NPC问题,是NP-hard的子集

NP-hard: 多项式时间内不一定能验证

SAT

中文名叫做合取范式CNF的可满足性问题SAT,是NPC问题

3-SAT

注意,2-SAT是P问题,3-SAT是NPC

e.g1

很好我也不会证,于是请教了万能的chatgpt

标答

e.g2 3-SAT规约

这道题是把一个四合取范式规约成一个3CNF

sol

e.g3

e.g4

Yes,

公式可满足

step1. 证明是个np问题

2.可满足性

3. 一致性

e.g5

顶点问题

 Hamitonian cycle 

综合题

 e.g1

e.g2

 


e.g3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/21991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

打开常用C语言常用内存函数的大门 ——memcmp函数及其模拟实现(完结篇)

文章目录 1. 前言2. memcmp函数2.1 memcmp函数的原型2.2 memcmp的返回值2.2 memcmp的形参2.3 memcmp函数的使用 3. memcmp函数的模拟实现4. 总结 1. 前言 本文是C语言常用内存函数的最后一个函数 —— memcmp函数。 希望各位观众佬爷们能够学会并灵活的使用这四个常用的内存函…

平板显示LED背光芯片OC6700,输入3.6V~60V,升压型 LED 恒流驱动器

概述 OC6700是一款内置60V功率NMOS高效率、高精度的升压型大功率LED恒流驱动芯片。OC6700采用固定关断时间的控制方式,关断时间可通过外部电容进行调节,工作频率可根据用户要求而改变。OC6700通过调节外置的电流采样电阻,能控制高亮度LED灯的…

C语言之指针进阶(5),sizeof和strlen的数组计算以及指针运算笔试难题详解

目录 前言 一、sizeof和strlen 的区分比较 二、sizeof,strlen与数组的计算 三、指针运算,笔试难题解析 总结 前言 本文作为指针进阶的最后一篇文章,给大家带来了丰富的例题,这其中包括区分比较sizeof和strlen计算各种花样的数组指针表达式…

Redis的SDS数据结构解决C语言字符串缺陷

redis设计了SDS这一数据结构来表示字符串而不是使用c语言的字符串:字符数组 那么redis为什么要大费周章自己设计字符串呢? 答案是C语言字符串有缺陷 1.获取字符串长度,需要遍历字符数组,时间复杂度是O(N&#xff09…

Springboot vue3 elementplus 景点评论数据分析与可视化系统源码

源码链接 系统演示:链接:https://pan.baidu.com/s/1J056R4rYji_mc4gwteZEzg?pwdnua4

教程 | 在 Navicat 17 中管理连接

Navicat 17 提供了比以往更多的连接数据库实例的方式。除了传统的连接字符串方式以外,Navicat 17 还支持 URI 连接,无论身在何处,都可以轻松地通过 URI 访问对象。另外,还有一个新的管理连接功能,即允许你通过一个以用…

【LeetCode】39.组合总和

组合总和 题目描述: 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同一个…

高中数学:平面向量-常考题型汇总

一、数量积运算 例题1 解析 首先,为了化简运算过程,我们把OA、OB、OC向量记作a、b、c向量。 其次,充分利用已知条件,进行消元,两边平方,可以消除一个向量。 a → \mathop{a}\limits ^{\rightarrow} a→ *…

【简单探索微软Edge】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

R语言安装caret包报错

R语言安装caret包报错:Error: package or namespace load failed for ‘caret’ in loadNamespace(i, c(lib.loc, .libPaths()), versionCheck vI[[i]]): 不存在叫‘recipes’这个名字的程辑包 https://rbasics.org/packages/caret-package-in-r/ R版本的问题&…

商业新闻|你还在用传统搜索引擎吗?

‍‍今天是2024年第22周 这是Yura「输出倒逼输入」计划的第11篇文章 全年进度:11/52 01 AI搜索为什么没超过传统搜索? 生成式AI在搜索引擎领域掀起了一轮又一轮的波澜,但是一年多过去了,不管是必应还是perplexity都并没有动摇Goog…

【TB作品】MSP430G2553霓虹灯呼吸灯跑马灯

霓虹灯: 跑马灯: 呼吸灯: 所有代码: 下载: https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tabBB08J2

苹果CMS:怎么添加2019和2020年份筛选

我们进入搜索的时候看到一个关于年份的搜索,那如果上面没有出现19,20我们该如何处理呢? 我们进入管理后台 -【系统】-【网站参数配置】-【预留参数】 添加下视频年代逗号隔开即可 如果要设置地区,语言也实在这里直接配置即可!&am…

毫米波雷达阵列天线设计综合1(MATLAB仿真)

1 天线设计目标 毫米波雷达探测目标的距离、速度和角度,其中距离和角度和天线设计相关性较强。天线增益越高,则根据雷达方程可知探测距离越远;天线波束越窄,则角度分辨率越高;天线副瓣/旁瓣越低,则干扰越少…

Kibana的使用

在学习elasticsearch时,可以使用Kibana自带的开发工具,来提高效率, 浏览器打开Kibana,在左侧菜单栏中找到Dev Tools 该工具提供代码提示和代码格式化功能,非常有用,

【已解决】记录Vue2.x中npm install下载依赖报错:python2 Error: not found: python2问题(具体操作步骤)

项目场景: 项目场景:在项目开发中,升级了本地node版本后,重新npm install下载依赖报错找不到python环境 not found: python2 npm ERR! gyp verb check python checking for Python executable “python2” in the PATH 在尝试了各…

Codeforces Round 950 (Div. 3)(A~F2)

G题只会暴力..不会数据结构 A - 问题 Generator 暴力模拟即可 // Problem: A. Problem Generator // Contest: Codeforces - Codeforces Round 950 (Div. 3) // URL: https://codeforces.com/contest/1980/problem/A // Memory Limit: 256 MB // Time Limit: 1000 ms // //…

哈夫曼树的构造,哈夫曼树的存在意义--求哈夫曼编码

一:哈夫曼树的构造 ①权值,带权路径长度。 ②一组确定权值的叶子节点可以构造多个不同的二叉树,但是带权路径长度min的是哈夫曼树 ③算法基本思想及其实操图片演示 注:存储结构和伪代码 1 初始化: 构造2n-1棵只有一个根节点的二叉树,parent=rchild=lchild=-1; 其中…

谷歌创新框架:从非结构化数据,实现多模态学习

看、听、说的多模态已成为主流大模型的重要功能之一。但在数据爆炸时代,大模型学习文本类的结构化数据相对还好一些,但要去学习视频、音频、图片等非结构化数据非常困难。 目前,从结构化和非结构化数据实现多模态学习,会随着模态…

QT_UI设计

mainwindow.h #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>QT_BEGIN_NAMESPACE //命名空间 namespace Ui { class MainWindow; } //ui_MainWindow文件里定义的类&#xff0c;外部声明 QT_END_NAMESPACEclass MainWindow : public QMainWindow {Q_O…