Windows10系统中安装与配置PyTorch(无GPU版本)

文章目录

  • 1. 什么是PyTorch
  • 2. PyTorch的安装与配置(无GPU)
    • 2.1 创建环境
    • 2.2 安装pytorch库(无GPU)
    • 2.3 验证安装结果


1. 什么是PyTorch

PyTorch 是一种用于构建深度学习模型且功能完备的开源框架,通常用于处理图像识别和语言处理等应用当中的机器学习。PyTorch 保留了 Torch(Lua版)的许多核心思想和设计理念,可以被看作是 Torch 的继承或进化版。由于它用 Python 编写,因此学习和使用起来相对简单。

PyTorch 是 Facebook AI Research(FAIR) 和其他几个实验室开发者的工作成果。该框架将 Torch 中高效而灵活的 GPU 加速后端库与直观的 Python 前端相结合,能完全支持 GPU,其中使用的“反向模式自动微分”技术,使得 PyTorch 可以动态修改计算图形,成为快速实验和原型设计的常用选择。它于 2017 年 1 月在 Github 上开源。

PyTorch的主要特点:

  • PyTorch.org 社区十分活跃,有大量优秀文档和教程;
  • 采用 Python 编写,并集成了大量的热门 Python 库,对于开发者而言相对容易学习;
  • 支持用于实验的“即时模式”,也支持用于高性能执行的“图形模式”;
  • 支持 CPU、GPU、并行处理以及分布式训练;
  • PyTorch 支持动态计算图形,能够在运行时更改网络行为,相比其他的静态计算具有更大的灵活性优势;
  • PyTorch.Hub 是一个预训练模型库,具有极简的调用接口;
  • 拥有从计算机视觉到增强学习等领域的大量工具和库。

2. PyTorch的安装与配置(无GPU)

在开始安装 PyTorch 之前,需要先确认是否满足以下条件:

  1. 操作系统要求:
    • Windows 7 及更高版本;建议 Windows 10 及以上版本;
    • Windows Server 2008 r2 及更高版本
  2. Python版本:目前 Windows 上的 PyTorch 仅支持 Python 3.8-3.11,不支持 Python 2.x

2.1 创建环境

深度学习项目通常依赖于多个第三方库和框架,且这些库中许多都有特定版本依赖关系和兼容性问题,因此,为了确保各项目的依赖包不会互相冲突,尽量地使用环境管理工具,将不同项目的环境隔离开。

这里我们用前文《安装conda并搭建python环境(入门教程)》提到的环境管理工具 Conda。依次运行如下命令创建名为 pytorch_env 的虚拟环境,安装的解释器为 Python=3.8,并激活该环境。

# 创建环境
conda create --name pytorch_env python=3.8  
# 激活环境
conda activate pytorch_env

在这里插入图片描述

2.2 安装pytorch库(无GPU)

在 PyTorch 官网当中,可以根据自己本地的安装环境,配置相应的条件得到安装命令。这里我们选择的条件是:稳定版,Win系统,conda命令安装,Python语言,仅有CPU

在这里插入图片描述

根据所选条件,生成安装命令 conda install pytorch torchvision torchaudio cpuonly -c pytorch。我们在已激活的 pytorch_env 环境下,输入上述命令运行即可。

Conda 在安装 PyTorch 时能自动安装该库所有的依赖项。在安装过程中会弹出是否继续运行(安装所列出的依赖项)的提示,输入 y 回车即可。

在这里插入图片描述

最后出现一个 done,说明安装完成。

2.3 验证安装结果

为了确保 PyTorch 已正确安装,我们可以通过运行 PyTorch 测试代码来验证。这里我们创建一个 test.py 文件,代码内容如下:

import torchx = torch.rand(5, 3)
print(x)

在安装了 PyTorch 的 pytorch_env 环境下,执行 python test.py 以运行该测试文件。PyTorch 安装成功的话,输出应类似于下图:

在这里插入图片描述
如果安装的是 GPU 版本,还可以通过如下代码检查 GPU 驱动程序和 CUDA 是否已启用并可供 PyTorch 访问。由于本文我们介绍的是 CPU 版本的安装,因此无需验证下面代码。

import torch
torch.cuda.is_available()

尽管CPU版本的 Pytorch 在核心功能接口方面并没有与 GPU 版本有差异,但由于没有利用 GPU 的并行计算能力,在训练深度学习模型和处理大规模数据时性能会相对差很多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/21240.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM学习-自定义类加载器

为什么要自定义类加载器 隔离加载类 在某些框架内进行中间件与应用的模块隔离,把类加载到不同的环境,如Tomcat这类Web应用服务器,内部自定义了好几种类加载器,用于隔离同一个Web应用服务器上的不同应用程序 修改类加载的方式 …

OpenCV 的几种查找图像中轮廓边缘的方法

原始图片: 1、Sobel() Sobel 算子结合了高斯平滑和微分,用于计算图像的梯度,从而突出显示边缘。 import cv2# 读取图像 image cv2.imread(image.png, cv2.IMREAD_GRAYSCALE)# 使用 Sobel 算子查找水平和垂直边缘 sobel_x cv2.Sobel(image…

建筑企业有闲置资质怎么办?

如果建筑企业拥有闲置资质,可以考虑以下几种方式来充分利用这些资质: 1. 租赁或转让资质: 将闲置的建筑资质租赁给其他企业或个人使用,或者通过转让的方式将资质出售给有需要的企业或个人。 2. 提供咨询服务: 利用建…

git分布式版本控制系统(四)

目前世界上最先进的分布式版本控制系统 官方网址:https://git-scm.com 学习目标: 1 了解 git 前世今生 2 掌握 git 基础概念、基础操作 3 各种 git 问题处理 4 互联网常用 gitflow(工作流程规范) 5 git 代码提交规范 6 git 分支管理及命名规范 常见问…

OneForall工具的下载安装和使用(Windows和Linux)

目录 OneForall的介绍 OneForall的下载 OneForall的安装 安装要求 安装步骤(git 版) 安装(kali) OneForall的使用命令 在Windows 在Linux(kali) OneForall的结果说明 免责声明 本文所提供的文字和…

车辆前向碰撞预警系统性能要求和测试规程

前言 本文整理《GB/T 33577-2017 智能运输系统-车辆前向碰撞预警系统性能要求和测试规程》国标文件关键信息,FCW系统性能和测试右给深层次的认识。 术语和定义 车辆前向碰撞预警系统 forward vehicle collision warning system自车 subject vehicle(SV)目标车辆 target ve…

【Linux】查找和压缩

一、文件查找 1、命令查找 which 2、文件查找、依赖数据库 locate 3、文件查找 find 语法:find [path] [options] [expression] [action] ①按文件名 -name按名 -iname可不区分大小写 ②按文件大小 5M:5M以上文件 5M:5M文件 -…

高中数学:解三角形相关公式总结及用法总结

一、正弦定理 二、余弦定理 三、三角形面积公式 由正弦定理,可以推出三角形的面积公式: S*ab*sinC S*ac*sinB S*bc*sinA 四、使用方法总结 五、练习 例题1 解析 对条件等式进行变形,结合余弦定理,求出∠A的度数,从而…

【面经分享-CPP篇】[建议收藏!!] C++基础20问-01

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新c面试基础 👏 感谢大家的订阅➕ 和 喜欢💗 文章目录 1.题目:解释C中的RAII机制。2.题目:解释C中的智能指针及其类型。3.题目&#xf…

从内存到sql的upsert

业务的upsert ​ 在写业务时,大家一开始都会以顺序流程的方式开始着手写代码,CR时再看代码,会有不一样的感觉。 1. 需求描述 ​ 现有一张数据库表,表字段结构如下: 字段名称类型描述uuidstring数据的唯一键datastrin…

代码随想录算法训练营第四十六天|KM52. 携带研究材料、518. 零钱兑换 II、377. 组合总和 Ⅳ

代码随想录算法训练营第四十六天 KM52. 携带研究材料 题目链接:KM52. 携带研究材料 确定dp数组以及下标的含义:j的含义是当前背包的最大容量,dp[j]背包内物品的总价值确定递推公式:背包最大容量固定为j,每个循环尝试…

Nginx01-HTTP简介与Nginx简介(安装、命令介绍、目录介绍、配置文件介绍)

目录 HTTP简介HTTP原理查看访问网站的详细流程curl -vwget --debug 查看网站访问量HTTP协议版本HTTP协议交互HTTP 请求请求报文起始行请求头 HTTP响应响应报文起始行响应头 Nginx常见的Web服务常见网站服务 安装NginxNginx目录结构Nginx启动管理Nginx常用命令 Nginx配置文件主配…

国内外主流大模型语言技术大比拼

国内外主流大模型语言技术对比 2024 自2017年起,美国深度布局人工智能,全面融入经济、文化与社会。至2023年,中国凭借自研技术平台崭露头角,ChatGPT及其技术成国家战略焦点,引领未来科技浪潮。中美竞逐,人工…

Milvus向量数据库:开启向量搜索新纪元

Milvus向量数据库:开启向量搜索新纪元 随着人工智能和机器学习技术的飞速发展,向量数据在各个领域的应用越来越广泛,如推荐系统、自然语言处理、计算机视觉等。在这样的背景下,如何高效地存储、查询和管理向量数据成为了一个重要的…

香橙派 AI pro:AI 加速初体验

香橙派 AI pro:AI 加速初体验 在AI领域,不断涌现的硬件产品为开发者提供了前所未有的便利和可能性。今天,我要介绍的这款产品——香橙派 AIpro,就是其中的佼佼者。在昇腾 AI 芯片的加持下,这款开发板有着出色的算力。…

961题库 北航计算机 操作系统 附答案 选择题形式

有题目和答案,没有解析,不懂的题问大模型即可,无偿分享。 第1组 习题 计算机系统的组成包括( ) A、程序和数据 B、处理器和内存 C、计算机硬件和计算机软件 D、处理器、存储器和外围设备 财务软件是一种&#xff…

【Qt 学习笔记】Qt窗口 | 对话框 | Qt对话框的分类及介绍

博客主页:Duck Bro 博客主页系列专栏:Qt 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Qt窗口 | 对话框 | 模态对话框 文章编号:Qt 学习笔记 / 51…

Java反序列化漏洞与URLDNS利用链分析

前言 前面学习过 Java 反序列化漏洞的部分知识,总结过几篇文章: 文章发布日期内容概括《渗透测试-JBoss 5.x/6.x反序列化漏洞》2020-07-08JBoss 反序列化漏洞 CVE-2017-12149 的简单复现,使用了 ysoserial 和 CC5 链,未分析漏洞…

easy-captcha生成验证码

引入依赖 <!-- https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-redis --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>…

[力扣题解] 404. 左叶子之和

题目&#xff1a;404. 左叶子之和 思路 前序遍历&#xff08;随便怎么遍历&#xff09;&#xff1b; 在遇到左叶子时处理数据&#xff0c;选择中、左、右里面的左的时候再判断这个节点是不是叶子&#xff1b; 代码 /*** Definition for a binary tree node.* struct TreeNo…