小白windows系统从零开始本地部署大模型全记录

大家好,最近两年大语言模型风靡全球,最近,不少开源大模型,将模型部署到自己的电脑上,用个性化的数据微调想必是不少人的愿望,这次,让我来分享从hugging face上下载部署chatglm3-6b中的经验。

1.硬件准备

具体参考这条帖子: https://zhuanlan.zhihu.com/p/655948272

结论:一般RTX 3060 6GB显卡是最小模型的门槛

补充“7B”指的是7亿参数。大语言模型参数量是指模型中可调整的参数的数量,通常用来衡量模型的大小和复杂程度,一般参数量越大的模型性能越强。商业化的模型一般在10B-100B之间,chatgpt4 13.3B。

我的配置:(查看方法:联想电脑管家,鲁大师)

很勉强,为了照顾显卡不行的小伙伴,这个帖子先用CPU进行部署

2.运算环境准备
2.1 安装anaconda

什么?你还不知道anaconda是啥?Conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换。

网上已经有很多下载安装教程,比如:https://blog.csdn.net/ABV09876543210/article/details/101194476

https://zhuanlan.zhihu.com/p/647523947

备注:现在最好python版本安装到3.8或者3.9,版本过低后面安装库的时候库的版本会过低。

我的报错解析:

  1. 如果你已经安装,但在cmd使用conda 却报没有此命令,可以看看是不是没加入你的环境变量

如何配置环境变量?Win11方法在此: https://blog.csdn.net/weixin_46483785/article/details/131163456

2.2 配置软件环境

用conda create -n env python==3.8 命令创建名为“env”的新虚拟环境,用activate env或者conda activate env进入新建的虚拟环境(前面会出现新环境的名字)

并在新虚拟环境中使用conda下载(下载方法在刚刚conda教程中有)transformers>=4.38.2(为啥是这个或者以上的版本?后面会考!),tensorflow和pytorch。Pytorch安装比较麻烦,分为CPU版本和GPU版,具体教程看这里:https://www.jb51.net/python/302744e4p.htm

我是使用这个命令安装CPU版的 #安装pytorch conda install pytorch torchvision torchaudio cpuonly -c pytorch。使用conda list可以看见所有下载了的库:

然后虚拟环境导入到jupyter中(这时要保证自己在新的环境中!) https://blog.csdn.net/m0_56075892/article/details/130005168 首先要确保环境中有ipykernel ipython 库,没有的话进行安装

安装ipykernel ipython

pip install ipykernel ipython

查看jupyter下面有多少个kernels

jupyter kernelspec list

ipython kernel install --user --name pytorch1.6(虚拟环境名字)

最后,进入jupyter notebook,将kernel 调整成对应的虚拟环境将验证安装好了的包

新建一个notebook文档,然后输入 import torch import transformers 如果没有报错说明你已经安装好了。

3.下载大模型:

Hugging face官网是要科学上网滴:https://huggingface.co/ 在网站上chatglm3的官方下载方式是:from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True) model = AutoModel.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True).half().cuda()

按照它的代码输入,你就会报这个错:

意思是:被墙了

这咋办?解决方法:国内镜像!https://hf-mirror.com/ https://aliendao.cn/#/ #我用的是这个

将所有文件下载到本地后,新建文件夹,命名,在本地加载 https://hf-mirror.com/

https://aliendao.cn/#/

例如,我将其放在这个文件夹下:

然后通过cd函数将工作路径调整到models文件夹后,就可以导入模型了:

from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True) model = AutoModel.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True).half() model = model.eval()

response, history = model.chat(tokenizer, “你好”, history=[]) print(response) 出现这样一句话说明你成功啦!你好!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。

如果报错:DLL load failed while importing _imaging: 找不到指定的模块的解决方法 是你安装的库的版本有问题,解决方法可以详见这个帖子:https://blog.csdn.net/qq_45510888/article/details/121446878

4.更简单,更快的部署方法:

一键下载安装!一键本地部署!

教程:https://zhuanlan.zhihu.com/p/672400265

支持以下模型,缺点:没有中文模型!:

这期到这里结束了,读到这里你也发现,这个不是一个纯粹的原创帖,更多是前人经验的总结归纳和我在走前人教程中遇到的问题,希望对大家有帮助。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/18939.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计 在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS&…

wifi贴码推广哪家靠谱?

如今越来越多的人想轻资产创业,WIFI贴码是共享行业最无成本的创业项目了,而在选择厂商的时候,大家就想要知道哪家公司靠谱,更好、更便宜、可靠。那么wifi贴码推广哪家靠谱?别急,下面小编将带你一起了解。 目…

OpenAI开始训练新的前沿模型——但GPT-5至少在90天内不会推出

ChatGPT 制造商 OpenAI 今早宣布,已开始训练其新的“前沿模型”,并成立了一个新的安全委员会,由现任董事会成员 Bret Taylor(OpenAI 董事会主席兼客户服务初创公司 Sierra AI 联合创始人、前谷歌地图负责人和前 Facebook 首席技术…

BGP路由策略实验

一、实验拓扑 二、IP分配(骨干) R1: 0/0/0 15.0.0.1 24 0/0/1 18.0.0.2 24 0/0/2 19.0.0.1 24 R2: 0/0/0 16.0.0.1 24 0/0/1 15.0.0.2 24 R3: 0/0/0 17.0.0.2 24 0/0/1 18.0.0.1 24 R4: 0/0/0 16.0…

元宇宙vr工业产品展示空间降低研发成本

元宇宙产品虚拟展厅搭建编辑器为您提供了一个自助式元宇宙场景搭建的绝佳平台。无论您是设计公司、摄影公司、营销公司还是教育机构,我们都能为您量身打造专属的元宇宙解决方案,满足您的多样化需求。 元宇宙产品虚拟展厅搭建编辑器具备强大的3D编辑功能&…

【吊打面试官系列】Java高并发篇 - ThreadLocal 是什么?有什么用?

大家好,我是锋哥。今天分享关于 【ThreadLocal 是什么?有什么用?】面试题,希望对大家有帮助; ThreadLocal 是什么?有什么用? ThreadLocal 是一个本地线程副本变量工具类。主要用于将私有线程和该…

dust3r部署踩坑全记录

目前dust3r是三维重建最新最好的技术,运用了ViT编码器、Transformer、注意力机制、回归等技术,无需相机参数标定。 但是我部署过程中有很多坑,记录一下。 1.OSError: CUDA_HOME environment variable is not set. Please set it to your CU…

数字工厂管理系统可以和哪些软件集成

随着工业4.0时代的到来,数字工厂管理系统已成为制造业转型升级的核心驱动力。数字工厂管理系统通过集成各种软件和技术,实现了生产过程的数字化、网络化和智能化,大大提高了生产效率和管理水平。本文将探讨数字工厂管理系统可以与哪些软件集成…

Axure RP软件汉化操作步骤

随着互联网产业的发展,设计师已经成为一个越来越受欢迎的职业,设计软件已经成为设计师必不可少的工具。说到设计软件,不得不说的是 Axure rp ,越来越多的设计师使用它来设计产品原型,作为美国 Axure Software Solution…

OrangePi Kunpeng Pro体验——安装Hass与驱动SPI小屏幕

OrangePi Kunpeng Pro 是一款面向开发者和爱好者的高性能开发板。在本次测评中,主要将以前的一些代码在该开发板上实现,包括docker部署hass,引脚驱动SPI小屏幕。中间遇到了一些小小问题,但都成功了,一起来试试吧~ 一、…

删除中间节点

题目链接 删除中间节点 题目描述 注意点 node既不是链表头节点,也不是链表尾节点 解答思路 将当前节点的值替换为下一个节点的值,并将当前节点的next指针设置为下一个节点的next指针,可以理解为删除了当前节点 代码 /*** Definition f…

考研计组chap1计算机系统概述

目录 一、计算机发展历程(不考了) 二、计算机硬件的基本组成 3 1.五个部分 (1)输入设备 (2)控制器 (3)运算器 (4)(主)存储器 (5&#xff0…

被忽视的模块化领域:聚合、结算与执行层

原文标题:《Aggregation, settlement, execution》撰文:Bridget Harris 编译:Chris,Techub News 在关注度和创新方面,模块化堆栈的各个部分并不一样,虽然之前有许多项目在数据可用性(DA&#xf…

[AI OpenAI] OpenAI董事会成立安全与保障委员会

这个新委员会负责就所有OpenAI项目的关键安全和保障决策提出建议;在90天内提出建议。 今天,OpenAI董事会成立了一个由主席Bret Taylor、Adam D’Angelo、Nicole Seligman和Sam Altman(CEO)领导的安全与保障委员会。该委员会将负责…

虹科Pico汽车示波器 | 免拆诊断案例 | 2017款吉利帝豪GL车发动机偶尔无法起动

故障现象  一辆2017款吉利帝豪GL车,搭载JLC-4G18发动机和手动变速器,累计行驶里程约为39.3万km。车主反映,该车发动机偶尔无法起动。故障发生频率比较频繁,冷机状态下故障比较容易出现。 故障诊断  接车后试车,故…

【Windows】本地磁盘挂载 Minio 桶

目录 1.软件安装安装winfsp支持安装rclone 2.新建rclone远程存储类型S3服务类型验证方式地区终端地址ACL服务端加密KMS 3.挂载存储盘 1.软件安装 安装winfsp支持 下载地址 或 下载地址2 文件为msi文件,下载后双击直接安装即可,可以选择安装路径 安装r…

手机号码携号转网查询保障用户权益、信息透明、优化用户体验

携号转网服务是指在同一本地网范围内,蜂窝移动通信用户(不含物联网用户)变更签约的基础电信业务经营者而用户号码保持不变的一项服务。近年来,随着通信行业的不断发展,携号转网服务已成为满足用户个性化需求、提升服务…

Strust2 远程代码执行漏洞[s2-005]

漏洞复现环境搭建请参考 http://t.csdnimg.cn/rZ34p kali切换jdk版本请参考 Kali安装JAVA8和切换JDK版本的详细过程_kali安装jdk8-CSDN博客 漏洞原理 Strust2会将http的每个参数名解析成为OGNL语句执行,OGNL表达式通过#来访问Struts的对象,并且通过过…

JS裁剪图片底部的水印

效果 源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Image Popup</title><style>…

达梦 结果拼接=多行结果返回一列字符串.

sql 转换 查询出多行数据 (select t.PROPERTY from JD_CODING t left join DELIVERY_OF c on t.VALUE c.TYPE where t.PROPERTY stackingType group by t.PROPERTY) 更改后 转为一列的拼接字符串 ( select listagg( distinct t.PROPERTY,,) within group ( order by t.P…