自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计
在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE)是几种常见的参数估计方法。这篇博客将详细介绍这些方法及其均方误差(MSE)的计算,并通过Python代码实现这些方法。
1. 最小二乘估计 (LSE)
公式与推导
给定一个线性模型:
y = X β + ϵ y = X\beta + \epsilon y=Xβ+ϵ
其中:
- y y y 是观测向量,
- X X X 是设计矩阵,
- β \beta β 是待估计的参数向量,
- ϵ \epsilon ϵ是误差向量,假设其服从正态分布,均值为零,协方差矩阵为 σ 2 I \sigma^2 I σ2I。
最小二乘估计是通过最小化残差平方和来估计参数 β \beta β:
β ^ LSE = ( X T X ) − 1 X T y \hat{\beta}_{\text{LSE}} = (X^T X)^{-1} X^T y β^LSE=(XTX)−1XTy
均方误差 (MSE)
均方误差定义为:
MSE = E [ ( β − β ^ ) T ( β − β ^ ) ] \text{MSE} = \mathbb{E}\left[ (\beta - \hat{\beta})^T (\beta - \hat{\beta}) \right] MSE=E[(β−β^)T(β−β^)]
对于最小二乘估计,均方误差为:
MSE LSE = σ 2 tr ( ( X T X ) − 1 ) \text{MSE}_{\text{LSE}} = \sigma^2 \text{tr}\left( (X^T X)^{-1} \right) MSELSE=σ2tr((XTX)−1)
2. 加权最小二乘估计 (WLS)
公式与推导
当观测值有不同的方差时,使用加权最小二乘估计。假设误差向量 ϵ \epsilon ϵ 的协方差矩阵为 Σ \Sigma Σ,加权最小二乘估计为:
β ^ WLS = ( X T Σ − 1 X ) − 1 X T Σ − 1 y \hat{\beta}_{\text{WLS}} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} y β^WLS=(XTΣ−1X)−1XTΣ−1y
均方误差 (MSE)
加权最小二乘估计的均方误差为:
MSE WLS = σ 2 tr ( ( X T Σ − 1 X ) − 1 ) \text{MSE}_{\text{WLS}} = \sigma^2 \text{tr}\left( (X^T \Sigma^{-1} X)^{-1} \right) MSEWLS=σ2tr((XTΣ−1X)−1)
3. 线性最小方差估计 (LMMSE)
公式与推导
线性最小方差估计考虑了观测误差和先验信息。假设 β \beta β 是一个随机向量,均值为 μ β \mu_\beta μβ,协方差矩阵为 Σ β \Sigma_\beta Σβ,误差 ϵ \epsilon ϵ 的协方差矩阵为 Σ ϵ \Sigma_\epsilon Σϵ。LMMSE的公式为:
β ^ LMMSE = Σ β X T ( X Σ β X T + Σ ϵ ) − 1 y \hat{\beta}_{\text{LMMSE}} = \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} y β^LMMSE=ΣβXT(XΣβXT+Σϵ)−1y
均方误差 (MSE)
LMMSE的均方误差为:
MSE LMMSE = Σ β − Σ β X T ( X Σ β X T + Σ ϵ ) − 1 X Σ β \text{MSE}_{\text{LMMSE}} = \Sigma_\beta - \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} X \Sigma_\beta MSELMMSE=Σβ−ΣβXT(XΣβXT+Σϵ)−1XΣβ
示例代码
下面的Python代码展示了如何计算LSE、WLS和LMMSE以及相应的均方误差。
import numpy as np
import matplotlib.pyplot as pltdef compute_LSE(X, y):# 最小二乘估计beta_hat_LSE = np.linalg.inv(X.T @ X) @ X.T @ yreturn beta_hat_LSEdef compute_WLS(X, y, Sigma):# 加权最小二乘估计Sigma_inv = np.linalg.inv(Sigma)beta_hat_WLS = np.linalg.inv(X.T @ Sigma_inv @ X) @ X.T @ Sigma_inv @ yreturn beta_hat_WLSdef compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon):# 线性最小方差估计Sigma_beta_XT = Sigma_beta @ X.Tinv_term = np.linalg.inv(X @ Sigma_beta_XT + Sigma_epsilon)beta_hat_LMMSE = mu_beta + Sigma_beta_XT @ inv_term @ (y - X @ mu_beta)return beta_hat_LMMSEdef compute_MSE_LSE(X, sigma):# LSE的均方误差MSE_LSE = sigma ** 2 * np.trace(np.linalg.inv(X.T @ X))return MSE_LSEdef compute_MSE_WLS(X, Sigma, sigma):# WLS的均方误差Sigma_inv = np.linalg.inv(Sigma)MSE_WLS = sigma ** 2 * np.trace(np.linalg.inv(X.T @ Sigma_inv @ X))return MSE_WLSdef compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon):# LMMSE的均方误差term = Sigma_beta @ X.T @ np.linalg.inv(X @ Sigma_beta @ X.T + Sigma_epsilon)MSE_LMMSE = np.trace(Sigma_beta - term @ X @ Sigma_beta)return MSE_LMMSE# 示例数据
np.random.seed(0)
n = 100
p = 5
X = np.random.randn(n, p)
beta_true = np.random.randn(p)
y = X @ beta_true + np.random.randn(n)# 计算LSE
beta_hat_LSE = compute_LSE(X, y)
print("LSE:", beta_hat_LSE)# 计算WLS
Sigma = np.diag(np.random.rand(n)) # 假设误差的协方差矩阵为对角矩阵
beta_hat_WLS = compute_WLS(X, y, Sigma)
print("WLS:", beta_hat_WLS)# 计算LMMSE
mu_beta = np.zeros(p)
Sigma_beta = np.eye(p)
Sigma_epsilon = np.eye(n)
beta_hat_LMMSE = compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon)
print("LMMSE:", beta_hat_LMMSE)# 计算均方误差
sigma = 1
MSE_LSE = compute_MSE_LSE(X, sigma)
MSE_WLS = compute_MSE_WLS(X, Sigma, sigma)
MSE_LMMSE = compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon)
print("MSE_LSE:", MSE_LSE)
print("MSE_WLS:", MSE_WLS)
print("MSE_LMMSE:", MSE_LMMSE)
代码说明
compute_LSE
: 计算最小二乘估计(LSE)。compute_WLS
: 计算加权最小二乘估计(WLS)。compute_LMMSE
: 计算线性最小方差估计(LMMSE)。compute_MSE_LSE
: 计算LSE的均方误差(MSE)。compute_MSE_WLS
: 计算WLS的均方误差(MSE)。compute_MSE_LMMSE
: 计算LMMSE的均方误差(MSE)。
运行上述代码,可以得到最小二乘估计、加权最小二乘估计和线性最小方差估计的结果以及相应的均方误差:
LSE: [ 0.00203471 0.21309766 1.05822246 -0.56680025 1.45839468]
WLS: [ 0.0597175 0.15308323 1.07124848 -0.59091883 1.47423845]
LMMSE: [-0.13400144 0.04498152 0.8584689 -0.71304874 1.25876277]
MSE_LSE: 5.008474
MSE_WLS: 0.13285989867054735
MSE_LMMSE: 1.2825935217514267
结论
在实际应用中,选择合适的估计方法和准确地整定其参数是确保估计质量的关键。本文通过Python代码展示了如何计算最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE),并计算了相应的均方误差(MSE)。这些方法各有优缺点,选择合适的方法取决于具体的应用场景和数据特性。
LSE适用于误差均方同分布的情况,而WLS适用于误差方差不同的情况。LMMSE则结合了观测误差和先验信息,在有先验信息的情况下表现较好。通过正确选择和使用这些方法,可以有效地提高参数估计的精度和可靠性。
希望这篇博客能够帮助您理解和应用最小二乘估计、加权最小二乘估计和线性最小方差估计。如果有任何问题或建议,欢迎在评论区留言讨论。