自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE)是几种常见的参数估计方法。这篇博客将详细介绍这些方法及其均方误差(MSE)的计算,并通过Python代码实现这些方法。

1. 最小二乘估计 (LSE)

公式与推导

给定一个线性模型:
y = X β + ϵ y = X\beta + \epsilon y=+ϵ
其中:

  • y y y 是观测向量,
  • X X X 是设计矩阵,
  • β \beta β 是待估计的参数向量,
  • ϵ \epsilon ϵ是误差向量,假设其服从正态分布,均值为零,协方差矩阵为 σ 2 I \sigma^2 I σ2I

最小二乘估计是通过最小化残差平方和来估计参数 β \beta β
β ^ LSE = ( X T X ) − 1 X T y \hat{\beta}_{\text{LSE}} = (X^T X)^{-1} X^T y β^LSE=(XTX)1XTy

均方误差 (MSE)

均方误差定义为:
MSE = E [ ( β − β ^ ) T ( β − β ^ ) ] \text{MSE} = \mathbb{E}\left[ (\beta - \hat{\beta})^T (\beta - \hat{\beta}) \right] MSE=E[(ββ^)T(ββ^)]

对于最小二乘估计,均方误差为:
MSE LSE = σ 2 tr ( ( X T X ) − 1 ) \text{MSE}_{\text{LSE}} = \sigma^2 \text{tr}\left( (X^T X)^{-1} \right) MSELSE=σ2tr((XTX)1)

2. 加权最小二乘估计 (WLS)

公式与推导

当观测值有不同的方差时,使用加权最小二乘估计。假设误差向量 ϵ \epsilon ϵ 的协方差矩阵为 Σ \Sigma Σ,加权最小二乘估计为:
β ^ WLS = ( X T Σ − 1 X ) − 1 X T Σ − 1 y \hat{\beta}_{\text{WLS}} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} y β^WLS=(XTΣ1X)1XTΣ1y

均方误差 (MSE)

加权最小二乘估计的均方误差为:
MSE WLS = σ 2 tr ( ( X T Σ − 1 X ) − 1 ) \text{MSE}_{\text{WLS}} = \sigma^2 \text{tr}\left( (X^T \Sigma^{-1} X)^{-1} \right) MSEWLS=σ2tr((XTΣ1X)1)

3. 线性最小方差估计 (LMMSE)

公式与推导

线性最小方差估计考虑了观测误差和先验信息。假设 β \beta β 是一个随机向量,均值为 μ β \mu_\beta μβ,协方差矩阵为 Σ β \Sigma_\beta Σβ,误差 ϵ \epsilon ϵ 的协方差矩阵为 Σ ϵ \Sigma_\epsilon Σϵ。LMMSE的公式为:
β ^ LMMSE = Σ β X T ( X Σ β X T + Σ ϵ ) − 1 y \hat{\beta}_{\text{LMMSE}} = \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} y β^LMMSE=ΣβXT(XΣβXT+Σϵ)1y

均方误差 (MSE)

LMMSE的均方误差为:
MSE LMMSE = Σ β − Σ β X T ( X Σ β X T + Σ ϵ ) − 1 X Σ β \text{MSE}_{\text{LMMSE}} = \Sigma_\beta - \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} X \Sigma_\beta MSELMMSE=ΣβΣβXT(XΣβXT+Σϵ)1XΣβ

示例代码

下面的Python代码展示了如何计算LSE、WLS和LMMSE以及相应的均方误差。

import numpy as np
import matplotlib.pyplot as pltdef compute_LSE(X, y):# 最小二乘估计beta_hat_LSE = np.linalg.inv(X.T @ X) @ X.T @ yreturn beta_hat_LSEdef compute_WLS(X, y, Sigma):# 加权最小二乘估计Sigma_inv = np.linalg.inv(Sigma)beta_hat_WLS = np.linalg.inv(X.T @ Sigma_inv @ X) @ X.T @ Sigma_inv @ yreturn beta_hat_WLSdef compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon):# 线性最小方差估计Sigma_beta_XT = Sigma_beta @ X.Tinv_term = np.linalg.inv(X @ Sigma_beta_XT + Sigma_epsilon)beta_hat_LMMSE = mu_beta + Sigma_beta_XT @ inv_term @ (y - X @ mu_beta)return beta_hat_LMMSEdef compute_MSE_LSE(X, sigma):# LSE的均方误差MSE_LSE = sigma ** 2 * np.trace(np.linalg.inv(X.T @ X))return MSE_LSEdef compute_MSE_WLS(X, Sigma, sigma):# WLS的均方误差Sigma_inv = np.linalg.inv(Sigma)MSE_WLS = sigma ** 2 * np.trace(np.linalg.inv(X.T @ Sigma_inv @ X))return MSE_WLSdef compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon):# LMMSE的均方误差term = Sigma_beta @ X.T @ np.linalg.inv(X @ Sigma_beta @ X.T + Sigma_epsilon)MSE_LMMSE = np.trace(Sigma_beta - term @ X @ Sigma_beta)return MSE_LMMSE# 示例数据
np.random.seed(0)
n = 100
p = 5
X = np.random.randn(n, p)
beta_true = np.random.randn(p)
y = X @ beta_true + np.random.randn(n)# 计算LSE
beta_hat_LSE = compute_LSE(X, y)
print("LSE:", beta_hat_LSE)# 计算WLS
Sigma = np.diag(np.random.rand(n))  # 假设误差的协方差矩阵为对角矩阵
beta_hat_WLS = compute_WLS(X, y, Sigma)
print("WLS:", beta_hat_WLS)# 计算LMMSE
mu_beta = np.zeros(p)
Sigma_beta = np.eye(p)
Sigma_epsilon = np.eye(n)
beta_hat_LMMSE = compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon)
print("LMMSE:", beta_hat_LMMSE)# 计算均方误差
sigma = 1
MSE_LSE = compute_MSE_LSE(X, sigma)
MSE_WLS = compute_MSE_WLS(X, Sigma, sigma)
MSE_LMMSE = compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon)
print("MSE_LSE:", MSE_LSE)
print("MSE_WLS:", MSE_WLS)
print("MSE_LMMSE:", MSE_LMMSE)

代码说明

  1. compute_LSE: 计算最小二乘估计(LSE)。
  2. compute_WLS: 计算加权最小二乘估计(WLS)。
  3. compute_LMMSE: 计算线性最小方差估计(LMMSE)。
  4. compute_MSE_LSE: 计算LSE的均方误差(MSE)。
  5. compute_MSE_WLS: 计算WLS的均方误差(MSE)。
  6. compute_MSE_LMMSE: 计算LMMSE的均方误差(MSE)。

在这里插入图片描述
在这里插入图片描述

运行上述代码,可以得到最小二乘估计、加权最小二乘估计和线性最小方差估计的结果以及相应的均方误差:

LSE: [ 0.00203471  0.21309766  1.05822246 -0.56680025  1.45839468]
WLS: [ 0.0597175   0.15308323  1.07124848 -0.59091883  1.47423845]
LMMSE: [-0.13400144  0.04498152  0.8584689  -0.71304874  1.25876277]
MSE_LSE: 5.008474
MSE_WLS: 0.13285989867054735
MSE_LMMSE: 1.2825935217514267

结论

在实际应用中,选择合适的估计方法和准确地整定其参数是确保估计质量的关键。本文通过Python代码展示了如何计算最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE),并计算了相应的均方误差(MSE)。这些方法各有优缺点,选择合适的方法取决于具体的应用场景和数据特性。

LSE适用于误差均方同分布的情况,而WLS适用于误差方差不同的情况。LMMSE则结合了观测误差和先验信息,在有先验信息的情况下表现较好。通过正确选择和使用这些方法,可以有效地提高参数估计的精度和可靠性。

希望这篇博客能够帮助您理解和应用最小二乘估计、加权最小二乘估计和线性最小方差估计。如果有任何问题或建议,欢迎在评论区留言讨论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/18938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

conda环境里安装ffmpeg

遇到的问题 在执行脚本的时候提示: /home/xxx/anaconda3/envs/llm-asr/lib/python3.9/site-packages/pydub/utils.py:170: RuntimeWarning: Couldnt find ffmpeg or avconv - defaulting to ffmpeg, but may not workwarn("Couldnt find ffmpeg or avconv - …

wifi贴码推广哪家靠谱?

如今越来越多的人想轻资产创业,WIFI贴码是共享行业最无成本的创业项目了,而在选择厂商的时候,大家就想要知道哪家公司靠谱,更好、更便宜、可靠。那么wifi贴码推广哪家靠谱?别急,下面小编将带你一起了解。 目…

OpenAI开始训练新的前沿模型——但GPT-5至少在90天内不会推出

ChatGPT 制造商 OpenAI 今早宣布,已开始训练其新的“前沿模型”,并成立了一个新的安全委员会,由现任董事会成员 Bret Taylor(OpenAI 董事会主席兼客户服务初创公司 Sierra AI 联合创始人、前谷歌地图负责人和前 Facebook 首席技术…

BGP路由策略实验

一、实验拓扑 二、IP分配(骨干) R1: 0/0/0 15.0.0.1 24 0/0/1 18.0.0.2 24 0/0/2 19.0.0.1 24 R2: 0/0/0 16.0.0.1 24 0/0/1 15.0.0.2 24 R3: 0/0/0 17.0.0.2 24 0/0/1 18.0.0.1 24 R4: 0/0/0 16.0…

元宇宙vr工业产品展示空间降低研发成本

元宇宙产品虚拟展厅搭建编辑器为您提供了一个自助式元宇宙场景搭建的绝佳平台。无论您是设计公司、摄影公司、营销公司还是教育机构,我们都能为您量身打造专属的元宇宙解决方案,满足您的多样化需求。 元宇宙产品虚拟展厅搭建编辑器具备强大的3D编辑功能&…

蓝牙设备中的UUID

文章目录 一、Device UUID二、Service UUID 一、Device UUID Device UUID也可以被称作为DeviceID。 Android 设备上扫描获取到的 deviceId 为外围设备的 MAC 地址,相对固定。iOS 设备上扫描获取到的 deviceId 是系统根据外围设备 MAC 地址及发现设备的时间生成的 …

如何成为AI工程师

AI工程师(不是打标员)已经成为新一代的热门岗位(高薪、有前景),无论你是计算机科学专业的学生,还是已经在其他技术领域工作的专业人士,可以通过以下几点来大概了解如何成为AI工程师。 1. 技术技…

【吊打面试官系列】Java高并发篇 - ThreadLocal 是什么?有什么用?

大家好,我是锋哥。今天分享关于 【ThreadLocal 是什么?有什么用?】面试题,希望对大家有帮助; ThreadLocal 是什么?有什么用? ThreadLocal 是一个本地线程副本变量工具类。主要用于将私有线程和该…

dust3r部署踩坑全记录

目前dust3r是三维重建最新最好的技术,运用了ViT编码器、Transformer、注意力机制、回归等技术,无需相机参数标定。 但是我部署过程中有很多坑,记录一下。 1.OSError: CUDA_HOME environment variable is not set. Please set it to your CU…

Itme4 对象使用前进行初始化

fun(){ int a; printf("%d\n", a); cout << a << endl; //会报错 使用了未初始化的变量a } //若a是全局变量则不会报错 会默认初始化为0 在对象中优先使用初始化列表&#xff1a; ABEntry::ABEntry(const std::string& name, const std::string&…

数字工厂管理系统可以和哪些软件集成

随着工业4.0时代的到来&#xff0c;数字工厂管理系统已成为制造业转型升级的核心驱动力。数字工厂管理系统通过集成各种软件和技术&#xff0c;实现了生产过程的数字化、网络化和智能化&#xff0c;大大提高了生产效率和管理水平。本文将探讨数字工厂管理系统可以与哪些软件集成…

Axure RP软件汉化操作步骤

随着互联网产业的发展&#xff0c;设计师已经成为一个越来越受欢迎的职业&#xff0c;设计软件已经成为设计师必不可少的工具。说到设计软件&#xff0c;不得不说的是 Axure rp &#xff0c;越来越多的设计师使用它来设计产品原型&#xff0c;作为美国 Axure Software Solution…

OrangePi Kunpeng Pro体验——安装Hass与驱动SPI小屏幕

OrangePi Kunpeng Pro 是一款面向开发者和爱好者的高性能开发板。在本次测评中&#xff0c;主要将以前的一些代码在该开发板上实现&#xff0c;包括docker部署hass&#xff0c;引脚驱动SPI小屏幕。中间遇到了一些小小问题&#xff0c;但都成功了&#xff0c;一起来试试吧~ 一、…

IDM有哪些优势?

IDM&#xff08;Internet Download Manager&#xff09;作为一款功能强大的文件下载工具&#xff0c;其优势主要体现在以下几个方面&#xff1a; 高速下载&#xff1a; IDM采用动态分段算法&#xff0c;将文件分成多个段同时下载&#xff0c;从而显著加快了下载速度。支持从多个…

删除中间节点

题目链接 删除中间节点 题目描述 注意点 node既不是链表头节点&#xff0c;也不是链表尾节点 解答思路 将当前节点的值替换为下一个节点的值&#xff0c;并将当前节点的next指针设置为下一个节点的next指针&#xff0c;可以理解为删除了当前节点 代码 /*** Definition f…

考研计组chap1计算机系统概述

目录 一、计算机发展历程(不考了) 二、计算机硬件的基本组成 3 1.五个部分 &#xff08;1&#xff09;输入设备 &#xff08;2&#xff09;控制器 &#xff08;3&#xff09;运算器 &#xff08;4&#xff09;&#xff08;主&#xff09;存储器 &#xff08;5&#xff0…

c语言基于mmap实现的内存池

文章目录 0. 概要1. mmap基础2. 为什么使用内存池&#xff1f;3. 使用示例4. 设计考虑5. 实现步骤 0. 概要 c语言基于mmap实现的内存池模块 仓库地址&#xff1a; https://gitee.com/liudegui/mem_allocator_c 1. mmap基础 mmap系统调用在进程的虚拟地址空间和某个文件对象或…

doxygen 1.11.0 使用详解(十四)——输出格式

目录 HTMLLATEXMan pagesRTFXMLDocBookCompiled HTML Help (a.k.a. Windows 98 help)Qt Compressed Help (.qch)Eclipse HelpXCode DocSetsPostScriptPDF The following output formats are directly supported by doxygen: HTML Generated if GENERATE_HTML is set to YES i…

时政|共享员工

概念 有人称“共享员工”就是变相的“劳务派遣”“外包”“临时工”&#xff0c;是对劳动者的变相压榨。专家表示&#xff0c;应从根源上理清“共享员工”的概念&#xff0c;否则会破坏正常的劳动合同秩序&#xff0c;无法让劳动者的合法权益得到有效保障。“共享员工”是指企…

被忽视的模块化领域:聚合、结算与执行层

原文标题&#xff1a;《Aggregation, settlement, execution》撰文&#xff1a;Bridget Harris 编译&#xff1a;Chris&#xff0c;Techub News 在关注度和创新方面&#xff0c;模块化堆栈的各个部分并不一样&#xff0c;虽然之前有许多项目在数据可用性&#xff08;DA&#xf…