STM32+CubeMX移植SPI协议驱动W25Q16FLash存储器

STM32+CubeMX移植SPI协议驱动W25Q16FLash存储器

  • SPI简介
    • 拓扑结构
    • 时钟相位(CPHA)和时钟极性( CPOL)
  • W25Q16简介
    • 什么是Flash,有什么特点?
    • W25Q16内部块、扇区、页的划分
    • 引脚定义
    • 通讯方式
    • 控制指令
    • 原理图
  • CubeMX配置
  • 驱动代码
  • 运行结果

W25Q16 是一种常见的串行闪存(Flash)存储器芯片,由 Winbond 公司生产。它是一种高性能、低功耗的闪存存储器,采用的是SPI通讯协议,想要想使用W25Q16,就必须要先会SPI协议。

SPI简介

SPI(Serial Peripheral Interface)是一种常用的串行通信协议,通常用于在数字集成电路之间进行通信,如微控制器、传感器、存储器、显示器等。SPI 协议定义了一种全双工、同步的串行数据传输方式,它通常由一个主设备(Master)和一个或多个从设备(Slave)组成。

SPI 协议的主要特点包括:

  • 全双工通信:主设备和从设备可以同时发送和接收数据,这使得 SPI 通信速度较快。

  • 同步通信:通信时钟由主设备生成,主设备控制数据传输的时序。这种同步方式可以提供较高的通信速率。

  • 多从设备支持:SPI 允许主设备与多个从设备进行通信,每个从设备都有一个片选信号(Chip Select),用于选择要通信的目标设备。

  • 单主多从结构:在标准的 SPI 总线中,通常只有一个主设备,多个从设备。但是,也有一些扩展协议支持多主设备的情况。

  • 串行传输:数据在时钟的边沿进行传输,可以是上升沿或下降沿,取决于设备的配置。

SPI 协议通常由以下几条信号线组成:

  • SCLK(Serial Clock):时钟信号,由主设备产生,用于同步数据传输。

  • MOSI(Master Out Slave In):主设备输出、从设备输入的数据线。

  • MISO(Master In Slave Out):主设备输入、从设备输出的数据线。

  • SS/CS(Slave Select/Chip Select):片选信号,由主设备控制,用于选择要通信的从设备。

由于本篇章的重点是W25Q16芯片介绍,所以这里不做过多的介绍SPI通讯协议,基础内容可以浏览:蓝桥杯单片机学习——SPI协议&DS1302实时时钟,这里介绍以下STM32上SPI的几个重要概念:

拓扑结构

在这里插入图片描述

时钟相位(CPHA)和时钟极性( CPOL)

  • 时钟极性( CPOL):在没有数据传输时时钟线的电平状态,0表示空闲时低电平,1表示空闲时高电平。
  • 时钟相位(CPHA:时钟线在第几个时钟边沿采集数据,0表示在第一个边沿开始采集,1表示在第二个边沿开始采集。
  • 不同的时钟相位和时钟极性,可以得到不同的SPI工作频率:
    在这里插入图片描述

W25Q16简介

W25Q16 是一种常见的串行闪存(Flash)存储器芯片,由 Winbond 公司生产。W25Q16采用的是SPI通讯协议,支持STM32的SPI数据传输时序0(CPOL = 0 ,CPHA = 0)和模式3(CPOL = 1,CPHA = 1),数据格式是长度为8位,MSB在前,LSB在后。它是一种高性能、低功耗的闪存存储器,具有以下特点:

  • 存储容量:W25Q16 芯片的存储容量为16 Megabit(Mb),相当于2 Megabyte(MB),其中1 Byte = 8 bit。

  • 接口:W25Q16 使用 SPI(Serial Peripheral Interface)串行接口进行通信,这使得它易于与各种微控制器和数字集成电路进行连接。

  • 工作电压:典型的工作电压为2.7V 至 3.6V,支持广泛的供电范围,适用于各种电源条件下的应用。

  • 工作温度:W25Q16 在工业级温度范围内(-40°C 至 +85°C)可靠工作,适用于工业和商业应用环境。

  • 封装:W25Q16 芯片通常采用表面贴装封装(Surface Mount Package),如8-pin SOIC(Small Outline Integrated Circuit)封装,方便集成到电路板上。

  • 快速擦除和编程:W25Q16 支持快速擦除和编程操作,使得数据更新和存储操作更加高效。

  • 多种保护功能:W25Q16 芯片提供了多种保护功能,如写保护功能、全片擦除保护、写使能锁定等,有助于提高数据的安全性和可靠性。

其他型号的Flas芯片,主要差距体现在存储器大小,比如W25Q32就是存储容量为32Mb = 4MB

什么是Flash,有什么特点?

  • FLASH是常用的用于储存数据的半导体器件,它具有容量大,可重复擦写、按“扇区/块”擦除、掉电后数据可继续保存的特性。
  • FLASH是有一个物理特性:只能写0,不能写1,写1靠擦除。
  • FLASH主要有NOR Flash和NAND Flash两种类型,NOR和NAND是两种数字门电路。
  • NOR Flash:基于字节读写,读取速度快,独立地址/数据线,无坏块,支持XIP,常见的应用有25QXX系列芯片和存储程序的ROM
  • NAND FLASH:基于块读写,读取速度稍慢,地址数据线共用,有坏块,不支持XIP,常见的应用有EMMC、SSD、U盘等

XIP:一般来说,处理器都是在flash上读取代码,到RAM里面执行,这样读取效率相对会低,而XIP则是支持处理器直接在FLash上读取程序并执行,可以提高运行效率。

W25Q16内部块、扇区、页的划分

在这里插入图片描述

  • W25Q16将内部的存储空间分为了32个块,每个块大小64KB
  • 每个块分为16个扇区,大小为4KB
  • 每个扇区分作16个页,每个页为256个字节,页是Flash读写操作的最小单位。
  • W25Q16共有16 * 16 * 32 = 8192个页

Flash存储器存在坏块的情况,当某一个页损坏而无法读写时,可能会导致整个块读写过程中某个数据读写异常而无法使用,且这种损坏是不可逆的,换句话来说,一个页损坏,会导致整个块无法正常读写,只能使用其他块进行读写,导致Flash容量下降。

引脚定义

在这里插入图片描述

  • /CS:片选信号,低电平有效,用作SPI通讯使用
  • DO(IO1):数据输出引脚(MISO)
  • /WP(IO2):写保护引脚,低电平有效
  • GND:接地
  • DI(IO4):数据输入引脚(MOSI)
  • CLK:SPI时钟引脚
  • /HOLD(IO3):暂停通讯引脚,高电平有效
  • VCC:电源引脚

通讯方式

控制指令

在对W25Q16进行操作之前,需要先发送指令,以控制W25Q16,以下是所有的指令集:

在这里插入图片描述
在这里插入图片描述

通常,我们对W25Q16进行读写操作,只需要以下几条指令即可完成:

在这里插入图片描述

原理图

在这里插入图片描述

CubeMX配置

  1. SPI配置:注意芯片引脚和原理图对应上。
    在这里插入图片描述

  2. GPIO配置:配置的是片选信号,使其默认高电平即可。
    在这里插入图片描述

  3. 定时器配置:用于试下微妙延时,以实现W25Q16的底层代码时序要求。
    在这里插入图片描述

  4. 其他部分的配置,自行完成,由于不涉及W25Q16的驱动,所以不做展示。

驱动代码

关于驱动代码,这里我是采用的正点原子提供的源码,然后修改以一部分,用作CubeMX配置移植使用,仅作个人学习使用!!!

  1. norflash.c
#include "norflash.h"
#include "spi.h"
#include "delay.h"
#include "usart.h"
#include "stm32f4xx_hal_gpio.h"
//
//本程序只供学习使用,未经作者许可,不得用于其它任何用途
//ALIENTEK NANO STM32F4开发板
//W25QXX驱动代码
//正点原子@ALIENTEK
//技术论坛:www.openedv.com
//创建日期:2019/4/23
//版本:V1.0
//版权所有,盗版必究。
//Copyright(C) 广州市星翼电子科技有限公司 2019-2029
//All rights reserved
//uint16_t NORFLASH_TYPE = NM25Q16; //默认就是NM25Q16//4Kbytes为一个Sector
//16个扇区为1个Block
//W25X16
//容量为2M字节,共有32个Block,512个Sector//初始化SPI FLASH的IO口
void Norflash_Init(void)
{
//    GPIO_InitTypeDef GPIO_Initure;//    __HAL_RCC_GPIOB_CLK_ENABLE();           //使能GPIOB时钟//    GPIO_Initure.Pin = GPIO_PIN_12;         //PB12
//    GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP; //推挽输出
//    GPIO_Initure.Pull = GPIO_PULLUP;        //上拉
//    GPIO_Initure.Speed = GPIO_SPEED_HIGH;   //高速
//    HAL_GPIO_Init(GPIOB, &GPIO_Initure);    //初始化NORFLASH_CS = 1;			              //SPI FLASH不选中
//    SPI2_Init();		   			        //初始化SPI
//    SPI2_SetSpeed(SPI_BAUDRATEPRESCALER_4); //设置为24M时钟,高速模式NORFLASH_TYPE = Norflash_ReadID();	      //读取FLASH ID.
}//读取SPI_FLASH的状态寄存器
//BIT7  6   5   4   3   2   1   0
//SPR   RV  TB BP2 BP1 BP0 WEL BUSY
//SPR:默认0,状态寄存器保护位,配合WP使用
//TB,BP2,BP1,BP0:FLASH区域写保护设置
//WEL:写使能锁定
//BUSY:忙标记位(1,忙;0,空闲)
//默认:0x00
uint8_t Norflash_ReadSR(void)
{uint8_t byte = 0;NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_ReadStatusReg);    //发送读取状态寄存器命令byte = SPI2_ReadWriteByte(0Xff);           //读取一个字节NORFLASH_CS = 1;                          //取消片选return byte;
}
//写SPI_FLASH状态寄存器
//只有SPR,TB,BP2,BP1,BP0(bit 7,5,4,3,2)可以写!!!
void Norflash_Write_SR(uint8_t sr)
{NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_WriteStatusReg);   //发送写取状态寄存器命令SPI2_ReadWriteByte(sr);               //写入一个字节NORFLASH_CS = 1;                          //取消片选
}
//SPI_FLASH写使能
//将WEL置位
void Norflash_Write_Enable(void)
{NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_WriteEnable);      //发送写使能NORFLASH_CS = 1;                          //取消片选
}
//SPI_FLASH写禁止
//将WEL清零
void Norflash_Write_Disable(void)
{NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_WriteDisable);     //发送写禁止指令NORFLASH_CS = 1;                          //取消片选
}
//读取芯片ID W25X16的ID:0XEF14
uint16_t Norflash_ReadID(void)
{uint16_t Temp = 0;NORFLASH_CS = 0;SPI2_ReadWriteByte(0x90);//发送读取ID命令SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);Temp |= SPI2_ReadWriteByte(0xFF) << 8;Temp |= SPI2_ReadWriteByte(0xFF);NORFLASH_CS = 1;return Temp;
}
//读取SPI FLASH
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToRead:要读取的字节数(最大65535)
void Norflash_Read(uint8_t *pBuffer, uint32_t ReadAddr, uint16_t NumByteToRead)
{uint16_t i;NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_ReadData);         //发送读取命令SPI2_ReadWriteByte((uint8_t)((ReadAddr) >> 16)); //发送24bit地址SPI2_ReadWriteByte((uint8_t)((ReadAddr) >> 8));SPI2_ReadWriteByte((uint8_t)ReadAddr);for (i = 0; i < NumByteToRead; i++){pBuffer[i] = SPI2_ReadWriteByte(0XFF); //循环读数}NORFLASH_CS = 1;                          //取消片选
}
//SPI在一页(0~65535)内写入少于256个字节的数据
//在指定地址开始写入最大256字节的数据
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!
void Norflash_Write_Page(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint16_t i;Norflash_Write_Enable();                  //SET WELNORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_PageProgram);      //发送写页命令SPI2_ReadWriteByte((uint8_t)((WriteAddr) >> 16)); //发送24bit地址SPI2_ReadWriteByte((uint8_t)((WriteAddr) >> 8));SPI2_ReadWriteByte((uint8_t)WriteAddr);for (i = 0; i < NumByteToWrite; i++)SPI2_ReadWriteByte(pBuffer[i]); //循环写数NORFLASH_CS = 1;                          //取消片选Norflash_Wait_Busy();					   //等待写入结束
}
//无检验写SPI FLASH
//必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
//具有自动换页功能
//在指定地址开始写入指定长度的数据,但是要确保地址不越界!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大65535)
//CHECK OK
void Norflash_Write_NoCheck(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint16_t pageremain;pageremain = 256 - WriteAddr % 256; //单页剩余的字节数if (NumByteToWrite <= pageremain)pageremain = NumByteToWrite; //不大于256个字节while (1){Norflash_Write_Page(pBuffer, WriteAddr, pageremain);if (NumByteToWrite == pageremain)break; //写入结束了else //NumByteToWrite>pageremain{pBuffer += pageremain;WriteAddr += pageremain;NumByteToWrite -= pageremain;			 //减去已经写入了的字节数if (NumByteToWrite > 256)pageremain = 256; //一次可以写入256个字节else pageremain = NumByteToWrite; 	 //不够256个字节了}};
}
//写SPI FLASH
//在指定地址开始写入指定长度的数据
//该函数带擦除操作!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大65535)
uint8_t W25QXX_BUFFER[4096];
void Norflash_Write(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint32_t secpos;uint16_t secoff;uint16_t secremain;uint16_t i;secpos = WriteAddr / 4096; //扇区地址 0~511 for w25x16secoff = WriteAddr % 4096; //在扇区内的偏移secremain = 4096 - secoff; //扇区剩余空间大小if (NumByteToWrite <= secremain)secremain = NumByteToWrite; //不大于4096个字节while (1){Norflash_Read(W25QXX_BUFFER, secpos * 4096, 4096); //读出整个扇区的内容for (i = 0; i < secremain; i++) //校验数据{if (W25QXX_BUFFER[secoff + i] != 0XFF)break; //需要擦除}if (i < secremain) //需要擦除{Norflash_Erase_Sector(secpos);//擦除这个扇区for (i = 0; i < secremain; i++)	 //复制{W25QXX_BUFFER[i + secoff] = pBuffer[i];}Norflash_Write_NoCheck(W25QXX_BUFFER, secpos * 4096, 4096); //写入整个扇区}else Norflash_Write_NoCheck(pBuffer, WriteAddr, secremain); //写已经擦除了的,直接写入扇区剩余区间.if (NumByteToWrite == secremain)break; //写入结束了else//写入未结束{secpos++;//扇区地址增1secoff = 0; //偏移位置为0pBuffer += secremain; //指针偏移WriteAddr += secremain; //写地址偏移NumByteToWrite -= secremain;				//字节数递减if (NumByteToWrite > 4096)secremain = 4096;	//下一个扇区还是写不完else secremain = NumByteToWrite;			//下一个扇区可以写完了}}
}
//擦除整个芯片
//整片擦除时间:
//W25X16:25s
//W25X32:40s
//W25X64:40s
//等待时间超长...
void Norflash_Erase_Chip(void)
{Norflash_Write_Enable();                  //SET WELNorflash_Wait_Busy();NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_ChipErase);        //发送片擦除命令NORFLASH_CS = 1;                          //取消片选Norflash_Wait_Busy();   				   //等待芯片擦除结束
}
//擦除一个扇区
//Dst_Addr:扇区地址 0~511 for w25x16
//擦除一个山区的最少时间:150ms
void Norflash_Erase_Sector(uint32_t Dst_Addr)
{Dst_Addr *= 4096;Norflash_Write_Enable();                  //SET WELNorflash_Wait_Busy();NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_SectorErase);      //发送扇区擦除指令SPI2_ReadWriteByte((uint8_t)((Dst_Addr) >> 16)); //发送24bit地址SPI2_ReadWriteByte((uint8_t)((Dst_Addr) >> 8));SPI2_ReadWriteByte((uint8_t)Dst_Addr);NORFLASH_CS = 1;                          //取消片选Norflash_Wait_Busy();   				   //等待擦除完成
}
//等待空闲
void Norflash_Wait_Busy(void)
{while ((Norflash_ReadSR() & 0x01) == 0x01); // 等待BUSY位清空
}
//进入掉电模式
void Norflash_PowerDown(void)
{NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_PowerDown);        //发送掉电命令NORFLASH_CS = 1;                          //取消片选delay_us(3);                               //等待TPD
}
//唤醒
void Norflash_WAKEUP(void)
{NORFLASH_CS = 0;                          //使能器件SPI2_ReadWriteByte(FLASH_ReleasePowerDown);   //  send W25X_PowerDown command 0xABNORFLASH_CS = 1;                          //取消片选delay_us(3);                               //等待TRES1
}
  1. norflash.h
#ifndef __NORFLASH_H
#define __NORFLASH_H  
#include "main.h"
//	 
//本程序只供学习使用,未经作者许可,不得用于其它任何用途
//ALIENTEK NANO STM32F4开发板
//W25QXX驱动代码	   
//正点原子@ALIENTEK
//技术论坛:www.openedv.com
//创建日期:2019/4/23
//版本:V1.0
//版权所有,盗版必究。
//Copyright(C) 广州市星翼电子科技有限公司 2019-2029
//All rights reserved									  
////W25X系列/Q系列芯片列表
#define W25Q80 	    0XEF13          /* W25Q80   芯片ID */
#define W25Q16 	    0XEF14          /* W25Q16   芯片ID */
#define W25Q32 	    0XEF15          /* W25Q32   芯片ID */
#define W25Q64 	    0XEF16          /* W25Q64   芯片ID */
#define W25Q128	    0XEF17          /* W25Q128  芯片ID */
#define NM25Q16     0X6814          /* NM25Q16  芯片ID */
#define NM25Q64     0X5216          /* NM25Q64  芯片ID */
#define NM25Q128    0X5217          /* NM25Q128 芯片ID */
#define BY25Q64     0X6816          /* BY25Q64  芯片ID */
#define BY25Q128    0X6817          /* BY25Q128 芯片ID */extern uint16_t NORFLASH_TYPE;//定义我们使用的flash芯片型号#define	NORFLASH_CS PBout(12)  //W25QXX的片选信号 extern uint8_t W25QXX_BUFFER[4096];//指令表
#define FLASH_WriteEnable       0x06
#define FLASH_WriteDisable      0x04
#define FLASH_ReadStatusReg     0x05
#define FLASH_WriteStatusReg    0x01
#define FLASH_ReadData          0x03
#define FLASH_FastReadData      0x0B
#define FLASH_FastReadDual      0x3B
#define FLASH_PageProgram       0x02
#define FLASH_BlockErase        0xD8
#define FLASH_SectorErase       0x20
#define FLASH_ChipErase         0xC7
#define FLASH_PowerDown         0xB9
#define FLASH_ReleasePowerDown  0xAB
#define FLASH_DeviceID          0xAB
#define FLASH_ManufactDeviceID  0x90
#define FLASH_JedecDeviceID     0x9Fvoid Norflash_Init(void);
uint16_t  Norflash_ReadID(void);  	      //读取FLASH ID
uint8_t	 Norflash_ReadSR(void);         //读取状态寄存器
void Norflash_Write_SR(uint8_t sr);  	  //写状态寄存器
void Norflash_Write_Enable(void);   //写使能
void Norflash_Write_Disable(void);  //写保护
void Norflash_Read(uint8_t *pBuffer, uint32_t ReadAddr, uint16_t NumByteToRead); //读取flash
void Norflash_Write(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite); //写入flash
void Norflash_Erase_Chip(void);    	   //整片擦除
void Norflash_Erase_Sector(uint32_t Dst_Addr);//扇区擦除
void Norflash_Wait_Busy(void);           //等待空闲
void Norflash_PowerDown(void);           //进入掉电模式
void Norflash_WAKEUP(void);			   //唤醒#endif
  1. spi.c:在spi.c中添加以下内容。同时注意在spi.h中声明该函数
/SPI2 读写一个字节
//TxData:要写入的字节
//返回值:读取到的字节
u8 SPI2_ReadWriteByte(u8 TxData)
{u8 Rxdata;HAL_SPI_TransmitReceive(&hspi2,&TxData,&Rxdata,1, 1000);       return Rxdata;          		    //返回收到的数据		
}
  1. delay.c
// Core\Src\delay.c
#include "tim.h"
#include "delay.h"
/*** @brief    微秒延时* @param    Delay_us  —— 指定延迟时间长度,单位为微秒。* @retval   None*/
void delay_us(uint32_t Delay_us) 
{__HAL_TIM_SetCounter(&htim11, 0);__HAL_TIM_ENABLE(&htim11);while(__HAL_TIM_GetCounter(&htim11) < Delay_us);/* Disable the Peripheral */__HAL_TIM_DISABLE(&htim11);
}
  1. delay.h
// Core\Inc\delay.h
#ifndef __DELAY_H__
#define __DELAY_H__#include "main.h"
#include "tim.h"void delay_us(uint32_t Delay_us);#endif /* __DELAY_H__ */
  1. main.h:添加以下代码
//定义一些常用的数据类型短关键字 
typedef int32_t  s32;
typedef int16_t s16;
typedef int8_t  s8;typedef const int32_t sc32;  
typedef const int16_t sc16;  
typedef const int8_t sc8;  typedef __IO int32_t  vs32;
typedef __IO int16_t  vs16;
typedef __IO int8_t   vs8;typedef __I int32_t vsc32;  
typedef __I int16_t vsc16; 
typedef __I int8_t vsc8;   typedef uint32_t  u32;
typedef uint16_t u16;
typedef uint8_t  u8;typedef const uint32_t uc32;  
typedef const uint16_t uc16;  
typedef const uint8_t uc8; typedef __IO uint32_t  vu32;
typedef __IO uint16_t vu16;
typedef __IO uint8_t  vu8;typedef __I uint32_t vuc32;  
typedef __I uint16_t vuc16; 
typedef __I uint8_t vuc8;  //位带操作,实现51类似的GPIO控制功能
//具体实现思想,参考<<CM3权威指南>>第五章(87页~92页).
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 
//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14     #define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 //IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 #define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 #define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 #define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 
  1. main.c
//要写入到W25Q16的字符串数组
const uint8_t TEXT_Buffer[] = {"Hello,The man who don't write code!"};
#define SIZE sizeof(TEXT_Buffer)
#define  FLASH_SIZE  2 * 1024 * 1024	//FLASH 大小为2M字节;int main(void)
{/* USER CODE BEGIN 1 */
//      uint8_t len;uint8_t datatemp[100]; //flash读取到的内容/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_SPI2_Init();MX_TIM11_Init();/* USER CODE BEGIN 2 */HAL_UART_Receive_IT(&huart1, (unsigned char* )aRxBuffer, 1); //串口接收中断,用作调试Norflash_Init();				    //W25QXX初始化printf("SPI TEST\r\n");NORFLASH_TYPE = Norflash_ReadID();//读取FLASH IDprintf("id:%#x\r\n",NORFLASH_TYPE); /* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){
//       if(USART_RX_STA&0x8000)
//		{					   
//			len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度
//		printf("\r\n您发送的消息为:\r\n");
//			HAL_UART_Transmit(&huart1,(uint8_t*)USART_RX_BUF,len,1000);	//发送接收到的数据
//			while(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_TC)!=SET);		//等待发送结束
//		printf("\r\n\r\n");//插入换行
//			USART_RX_STA=0;
//		}Norflash_Write((uint8_t *)TEXT_Buffer, FLASH_SIZE - 100, sizeof(TEXT_Buffer));	//从倒数第100个地址处开始,写入SIZE长度的数据HAL_Delay(1000);printf("Write:%s\r\n", TEXT_Buffer); //显示读到的字符串Norflash_Read(datatemp, FLASH_SIZE - 100, sizeof(TEXT_Buffer));	//从倒数第100个地址处开始,读出SIZE个字节HAL_Delay(1000);printf("Read:%s\r\n", datatemp); //显示读到的字符串/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}

以上就是所有W25Q16的驱动代码,仅供个人学习哈,如果有哪里有误,还请斧正。

运行结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/15205.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iBarcoder for Mac v3.15.1中文激活版:让条形码生成变得如此简单

在现代社会&#xff0c;条形码无处不在&#xff0c;从超市商品到物流包裹&#xff0c;都离不开它的身影。iBarcoder for Mac作为一款简单易用的条形码生成软件&#xff0c;让条形码的生成变得如此简单。 iBarcoder for Mac v3.15.1中文激活版下载 无论你是需要为商品添加条形码…

Scrapy框架简单介绍及Scrapy项目编写详细步骤

引言 Scrapy是一个用Python编写的开源、功能强大的网络爬虫框架&#xff0c;专为网页抓取和数据提取设计。它允许开发者高效地从网站上抓取所需的数据&#xff0c;并通过一系列可扩展和可配置的组件来处理这些数据。Scrapy框架的核心组成部分包括&#xff1a; Scrapy Engine&…

aws glue配置读取本地kafka数据源

创建连接时填写本地私有ip地址&#xff0c;选择网络配置 配置任务选择kafka作为数据源 但是执行任务时日志显示连接失败 文档提到只能用加密通信 如果您希望与 Kafka 数据源建立安全连接&#xff0c;请选择 Require SSL connection (需要 SSL 连接)&#xff0c;并在 Kafka priv…

python批发模块的调试之旅:从新手到专家的蜕变

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、调试技巧的重要性 二、批发模块调试的实战演练 1. 设置断点 2. 逐行执行代码 3. 观察…

SM2258G专用SSD开卡工具(三星闪存),后附工具下载

工具下载&#xff1a; https://download.csdn.net/download/weixin_43097956/89354302

视频怎么转换成二维码图片?视频做成二维码播放的方法

怎样在电脑上制作可以播放视频的二维码呢&#xff1f;很多日常生活中&#xff0c;很多的场景或者物品都会有自己的二维码&#xff0c;其他人通过扫码就可以获取对应的内容。有很多场景下会把视频转换二维码&#xff0c;通过扫码在手机上查看视频内容&#xff0c;比如产品介绍、…

水表电表远程抄表是什么?

1.简述&#xff1a;水表电表远程抄表技术性 随着时代的发展&#xff0c;传统式手动抄表方法早已被更为高效、智能化的远程抄表系统所替代。水表电表远程抄表&#xff0c;说白了&#xff0c;就是利用互联网技术完成对水表和电表读数的远程数据采集管理方法&#xff0c;大大提升…

效果炸裂!使用 GPT-4o 快速实现LLM OS

▼最近直播超级多&#xff0c;预约保你有收获 —1— 什么是 LLM OS&#xff1f; 关于 LLM OS 的最初构想源自karpathy 在2023年11月11日发布的一条Twitter 动态&#xff0c;这是 LLM OS 概念的最早出处&#xff0c;如下图所示&#xff1a; LLM OS 主要有以下5个部分组成&#x…

基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法,对比两个算法的仿真时间&#xff0c;收敛曲线&#xff0c;以及路径规划的结果&#xff0…

Flask+Vue+MySQL天水麻辣烫管理系统设计与实现(附源码 配置 文档)

背景&#xff1a; 同学找到我期望做一个天水麻辣烫的网页&#xff0c;想复用以前做过的课设&#xff0c;结合他的实际需求&#xff0c;让我们来看看这个系统吧~ 项目功能与使用技术概述&#xff1a; 里面嵌入了6个子系统&#xff0c;其中餐饮系统可以进行餐馆信息添加、修改…

Influence blocking maximization on networks: Models, methods and applications

abstract 由于各种社会和贸易网络的不断出现&#xff0c;网络影响力分析引起了研究者的极大兴趣。基于不同的影响力传播模型&#xff0c;人们提出了许多网络影响力最大化的新模型和方法。作为传统影响力最大化问题的延伸和扩展&#xff0c;影响力封锁最大化问题已成为研究热点&…

借助 CloudFlare 增强站点内容保护防采集

今天在一位站长的帮助下实测了 CloudFlare 增强站点内容保护实现防采集的功能,效果那是杠杠的,如果您的站点原创内容比较多的话,明月强烈建议试试 CloudFlare 这个内容保护,无论是 WordPress 、Typecho 都有非常好的效果,并且几乎没有任何误伤,搜索引擎爬虫蜘蛛更是不会影…

【图论】单源最短路

前言 今天&#xff0c;我们来讲最短路&#xff0c;首先看只有一个起点&#xff08;单源&#xff09;的情况。 为了书写方便&#xff0c;我们约定以下内容&#xff1a; template<class W> using Graph vector<vector<pair<int, W>>>; // 邻接表(ve…

集中抄表电表是什么?

1.集中抄表电表&#xff1a;简述 集中抄表电表&#xff0c;又称为远程抄表系统&#xff0c;是一种现代化电力计量技术&#xff0c;为提升电力行业的经营效率和客户服务质量。它通过自动化的形式&#xff0c;取代了传统人工抄水表&#xff0c;完成了数据信息实时、精确、高效率…

进制转换【野路子改造】

非科班&#xff0c;一直都是自己的野路子&#xff0c;现在要回炉重造 十进制->二进制 基本思想&#xff1a; 开始写的&#xff08;80%&#xff09;&#xff1a; #include<stdio.h> using namespace std; int main(){ int n; scanf("%d",&n); int a[1…

以太坊钱包

以太坊钱包是你通往以太坊系统的门户。它拥有你的密钥&#xff0c;并且可以代表你创建和广播交易。选择一个以太坊钱包可能很困难&#xff0c;因为有很多不同功能和设计选择。有些更适合初学者&#xff0c;有些更适合专家。即使你现在选择一个你喜欢的&#xff0c;你可能会决定…

5.26 基于UDP的网络聊天室

需求&#xff1a; 如果有人发送消息&#xff0c;其他用户可以收到这个人的群聊信息 如果有人下线&#xff0c;其他用户可以收到这个人的下线信息 服务器可以发送系统信息实现模型 模型&#xff1a; 代码&#xff1a; //chatser.c -- 服务器端实现 #include <stdio.h>…

hive初始化失败报错:Error: Duplicate key name ‘PCS_STATS_IDX‘ (state=42000,code=1061)

意思是key name ‘PCS_STATS_IDX’ (state42000,code1061)重复了&#xff0c;问题出在不是第一次初始化&#xff0c;因为我们在hive-site.xml中配置了 javax.jdo.option.ConnectionURL jdbc:mysql://192.168.200.137:3306/metastore?createDatabaseIfNotExisttrue JDBC conne…

JavaSE——类和对象(二)~~封装

目录 一.封装 二.封装扩展之包 三.static成员 四. 代码块 五. 内部类&#xff08;重要&#xff09; 大家好呀&#xff0c;我是北纬&#xff0c;接着上节我们继续讲解Java中关于类和对象的相关知识&#xff0c;今天着重给大家介绍一下关于面向对象程序的特性之一——封装。…

【Linux】常用基础命令 | 搭建云服务器优化环境 | 程序的部署

文章目录 Linux常用命令及搭建环境一、LinuxLinux发行版 1.常用命令1.ls2.cd3.pwd4.touch5.cat6.echo7.vim8.mkdir9.rm10.mv11.cp12.man13.grep14.ps15.netstat 2.搭建Java Web程序的运行环境包管理器1.安装JDK2.安装Tomcat3.安装mysql 3.程序的部署 Linux常用命令及搭建环境 …