数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!数据源存放在我的资源下载区啦!

数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作

目录

  • 数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作
    • 编程题
      • 1. 给定一组离散数据点,使用 scipy.interpolate 中的插值方法(如线性插值、样条插值等)对其进行插值,并绘制插值结果。
      • 2. 使用 scipy.optimize 中的优化算法,找到函数的最小值点,并在图中标出最小值点。
      • 3. 绘制正态分布数据的直方图和概率密度函数曲线
      • 4. 对一组实验数据进行曲线拟合,使用 scipy.optimize.curve_fit 函数拟合一个非线性函数,并绘制原始数据和拟合曲线。
      • 5. 对以下函数进行数值积分,并绘制函数曲线以及积分结果的区域。
      • 6. 使用 scipy.ndimage 中的函数对“gdufe_logo.jpg”进行平滑处理(模糊处理、高斯滤波)和边缘处理(Sobel滤波),并展示原始图片和处理后的效果。
      • 7. 对 "gdufe.jpeg" 图像进行奇异值分解,并使用20、100、200个奇异值重建图像,并将原始图像与重建图像进行可视化。
      • 8. 对太阳黑子数据集,采用scipy.signal.convolve 对其进行移动平均卷积。原始信号和卷积后的信号被绘制在同一图表上进行比较。
      • 9. 给定一段时间的销售额,使用 scipy.stats.linregress 进行线性回归,预测未来的销售额。
      • 10. 对 "形态学.jpg" 图像,应用膨胀、腐蚀、开运算和闭运算,并可视化处理后的图像。

编程题

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd# 支持中文
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']  # SimHei 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

1. 给定一组离散数据点,使用 scipy.interpolate 中的插值方法(如线性插值、样条插值等)对其进行插值,并绘制插值结果。

from scipy.interpolate import interp1d# 给定离散数据点
x = np.linspace(0, 30, 10)
y = np.sin(x)# 添加噪声
np.random.seed(20240501)
noise = np.random.normal(0, 0.1, len(y))
y_noisy = y + noise# 线性插值
linear_interp = interp1d(x, y_noisy, kind='linear')# 样条插值
cubic_interp = interp1d(x, y_noisy, kind='cubic')# 在新的 x 值上进行插值
x_new = np.linspace(0, 30, 1000)
y_linear = linear_interp(x_new)
y_cubic = cubic_interp(x_new)# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(x, y_noisy, 'o', label='Noisy Data')
plt.plot(x_new, y_linear, label='Linear Interpolation')
plt.plot(x_new, y_cubic, label='Cubic Spline Interpolation')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Interpolation of Noisy Data')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

2. 使用 scipy.optimize 中的优化算法,找到函数的最小值点,并在图中标出最小值点。

目标函数为:

f ( x ) = sin ⁡ ( 3 x ) + 1.5 x 2 − 2 x f(x) = \sin(3x) + 1.5x^2 - 2x f(x)=sin(3x)+1.5x22x

from scipy.optimize import minimize# 定义目标函数
def objective_function(x):return np.sin(3 * x) + 1.5 * x**2 - 2 * x# 定义搜索空间
bounds = [(-5, 5)]# 使用全局优化算法(差分进化算法)寻找最小值
result = differential_evolution(objective_function, bounds)# 打印最小值点
min_x = result.x
min_y = result.fun
print("Minimum point:", min_x)
print("Minimum value:", min_y)# 绘制目标函数
x_vals = np.linspace(-5, 5, 400)
y_vals = objective_function(x_vals)plt.figure(figsize=(10, 6))
plt.plot(x_vals, y_vals, label='Objective Function')
plt.scatter(min_x, min_y, color='red', label='Minimum Point')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('Global Minimization of Objective Function')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

3. 绘制正态分布数据的直方图和概率密度函数曲线

from scipy.stats import norm# 生成正态分布的随机样本
np.random.seed(20240501)
sample_size = 1000
mean = 0
std_dev = 1
data = np.random.normal(mean, std_dev, sample_size)# 添加噪声
noise_mean = 0
noise_std_dev = 0.2
noise = np.random.normal(noise_mean, noise_std_dev, sample_size)
noisy_data = data + noise# 绘制直方图
plt.figure(figsize=(10, 6))
plt.hist(noisy_data, bins=30, density=True, alpha=0.6, color='b', label='Histogram')# 绘制概率密度函数曲线
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mean, std_dev)
plt.plot(x, p, 'k', linewidth=2, label='PDF')plt.title('Histogram and PDF of Noisy Normal Distribution')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

4. 对一组实验数据进行曲线拟合,使用 scipy.optimize.curve_fit 函数拟合一个非线性函数,并绘制原始数据和拟合曲线。

from scipy.optimize import curve_fit# 定义非线性函数
def nonlinear_function(x, a, b, c):return a * np.sin(b * x) + c# 生成实验数据
np.random.seed(20240501)
x_data = np.linspace(0, 10, 100)
y_data = 2 * np.sin(1.5 * x_data) + 1 + np.random.normal(0, 0.5, len(x_data))# 使用 curve_fit 函数拟合非线性函数
popt, pcov = curve_fit(nonlinear_function, x_data, y_data)# 获取拟合参数
a_fit, b_fit, c_fit = popt# 绘制原始数据和拟合曲线
plt.figure(figsize=(10, 6))
plt.scatter(x_data, y_data, label='Original Data')
plt.plot(x_data, nonlinear_function(x_data, a_fit, b_fit, c_fit), 'r-', label='Fitted Curve')
plt.title('Curve Fitting with Nonlinear Function')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

5. 对以下函数进行数值积分,并绘制函数曲线以及积分结果的区域。

要积分的函数为:

f ( x ) = sin ⁡ ( x ) + 1 2 cos ⁡ ( 2 x ) f(x) = \sin(x) + \frac{1}{2} \cos(2x) f(x)=sin(x)+21cos(2x)

对该函数从 x = 0 x=0 x=0 x = 2 π x=2\pi x=2π 进行数值积分。

from scipy.integrate import quad# 以下编码
# 定义函数
def f(x):return np.sin(x) + 0.5 * np.cos(2 * x)# 定义积分区间
a = 0
b = 2 * np.pi# 数值积分
integral_result, error = quad(f, a, b)# 生成 x 值
x_values = np.linspace(a, b, 100)# 计算函数值
y_values = f(x_values)# 绘制函数曲线和积分区域
plt.figure(figsize=(10, 6))
plt.plot(x_values, y_values, label='Function Curve')
plt.fill_between(x_values, y_values, alpha=0.3, label='Integral Area')
plt.title('Function Curve and Integral Area')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.axhline(0, color='black', linewidth=0.5)  # 绘制 x 轴
plt.axvline(0, color='black', linewidth=0.5)  # 绘制 y 轴
plt.legend()
plt.grid(True)
plt.show()print("Integral result:", integral_result)

在这里插入图片描述

6. 使用 scipy.ndimage 中的函数对“gdufe_logo.jpg”进行平滑处理(模糊处理、高斯滤波)和边缘处理(Sobel滤波),并展示原始图片和处理后的效果。

from scipy import ndimage
from PIL import Image# 读取图像
image = Image.open("../data/gdufe_logo.jpg")
image = image.convert("L")  # 将图像转换为灰度图像# 平滑处理(高斯滤波)
smoothed_image = ndimage.gaussian_filter(image, sigma=3)# 边缘处理(Sobel滤波)
sobel_image = ndimage.sobel(image)# 展示原始图片和处理后的效果
plt.figure(figsize=(12, 6))plt.subplot(1, 3, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')
plt.axis('off')plt.subplot(1, 3, 2)
plt.imshow(smoothed_image, cmap='gray')
plt.title('Smoothed Image (Gaussian Filter)')
plt.axis('off')plt.subplot(1, 3, 3)
plt.imshow(sobel_image, cmap='gray')
plt.title('Edges (Sobel Filter)')
plt.axis('off')plt.show()

在这里插入图片描述

7. 对 “gdufe.jpeg” 图像进行奇异值分解,并使用20、100、200个奇异值重建图像,并将原始图像与重建图像进行可视化。

注意:用摊平后的图像进行 SVD 操作,然后再重塑展现,从而可以处理彩色RGB图像。

from PIL import Image
from scipy.linalg import svd# 读取彩色图像
image = Image.open("../data/gdufe.jpeg")# 将图像转换为 numpy 数组
image_array = np.array(image)# 获取图像的尺寸
m, n, c = image_array.shape# 摊平图像数组
flat_image_array = image_array.reshape(-1, c)# 进行奇异值分解
U, s, Vt = np.linalg.svd(flat_image_array, full_matrices=False)# 重建图像函数
def reconstruct_image(U, s, Vt, num_singular_values):# 使用指定数量的奇异值重建图像reconstructed_image_array = np.dot(U[:, :num_singular_values], np.dot(np.diag(s[:num_singular_values]), Vt[:num_singular_values, :]))# 重塑图像数组形状reconstructed_image_array = np.clip(reconstructed_image_array, 0, 255).astype(np.uint8)reconstructed_image = reconstructed_image_array.reshape(m, n, c)return Image.fromarray(reconstructed_image)# 使用不同数量的奇异值重建图像并可视化
num_singular_values_list = [20, 100, 200]plt.figure(figsize=(15, 5))for i, num_singular_values in enumerate(num_singular_values_list):plt.subplot(1, len(num_singular_values_list), i + 1)reconstructed_image = reconstruct_image(U, s, Vt, num_singular_values)plt.imshow(reconstructed_image)plt.title(f'{num_singular_values} Singular Values')plt.axis('off')plt.show()

在这里插入图片描述

8. 对太阳黑子数据集,采用scipy.signal.convolve 对其进行移动平均卷积。原始信号和卷积后的信号被绘制在同一图表上进行比较。

from scipy import signal
from statsmodels import datasets# 加载太阳黑子数据集
sp = datasets.sunspots.load_pandas().data['SUNACTIVITY']# 定义移动平均窗口大小
window_size = 11# 计算移动平均
moving_avg = np.convolve(sp, np.ones(window_size)/window_size, mode='valid')# 创建时间轴
time = np.arange(len(sp))# 绘制原始信号和移动平均后的信号
plt.figure(figsize=(10, 6))
plt.plot(time, sp, label='Original Signal')
plt.plot(time[window_size-1:], moving_avg, label=f'Moving Average (Window Size {window_size})')
plt.title('Sunspot Activity with Moving Average Convolution')
plt.xlabel('Time')
plt.ylabel('Sunspot Activity')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

9. 给定一段时间的销售额,使用 scipy.stats.linregress 进行线性回归,预测未来的销售额。

from scipy.stats import linregress# 给定时间段的销售额数据
sales = np.array([100, 120, 130, 140, 150, 160, 170, 180, 190, 200])
time = np.arange(len(sales))# 进行线性回归
slope, intercept, r_value, p_value, std_err = linregress(time, sales)# 使用线性回归方程预测未来销售额
future_time = np.arange(len(sales), len(sales) + 5)  # 假设预测未来5个时间点
future_sales = slope * future_time + intercept# 绘制原始销售额和线性回归线
plt.figure(figsize=(10, 6))
plt.scatter(time, sales, label='Actual Sales')
plt.plot(time, slope * time + intercept, color='red', label='Linear Regression')
plt.scatter(future_time, future_sales, color='green', label='Predicted Sales')
plt.title('Sales Linear Regression and Prediction')
plt.xlabel('Time')
plt.ylabel('Sales')
plt.legend()
plt.grid(True)
plt.show()# 输出预测未来销售额
print("预测未来销售额:")
for t, s in zip(future_time, future_sales):print(f"时间 {t}: 销售额 {s}")

在这里插入图片描述

10. 对 “形态学.jpg” 图像,应用膨胀、腐蚀、开运算和闭运算,并可视化处理后的图像。

运算参数:size = (10, 10)

from PIL import Image
from scipy import ndimage# 打开图像
image = Image.open("../data/形态学.jpg")# 将图像转换为灰度图像
image_gray = image.convert("L")# 转换为数组
image_array = np.array(image_gray)# 定义运算参数
size = (10, 10)# 应用膨胀
dilated_image = ndimage.grey_dilation(image_array, size=size)# 应用腐蚀
eroded_image = ndimage.grey_erosion(image_array, size=size)# 应用开运算
opened_image = ndimage.grey_opening(image_array, size=size)# 应用闭运算
closed_image = ndimage.grey_closing(image_array, size=size)# 可视化处理后的图像
plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)
plt.imshow(image_array, cmap='gray')
plt.title('Original Image')plt.subplot(2, 3, 2)
plt.imshow(dilated_image, cmap='gray')
plt.title('Dilated Image')plt.subplot(2, 3, 3)
plt.imshow(eroded_image, cmap='gray')
plt.title('Eroded Image')plt.subplot(2, 3, 4)
plt.imshow(opened_image, cmap='gray')
plt.title('Opened Image')plt.subplot(2, 3, 5)
plt.imshow(closed_image, cmap='gray')
plt.title('Closed Image')plt.tight_layout()
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/11675.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringSecurity的核心原理使用总结

1. SpringSecurity的核心原理 对于最原始Servlet请求处理的层次结构 客户端->过滤器链->Servlet 对于在SpringMVC中处理请求的层次结构 如何让Filter与Spring建立连接呢? 因此它增加了一个DelegatingFilterProxy 它是SpringMVC提供的的Filter,它内部代理了一个原生的F…

Spring框架概述

目录 1. Spring框架的起源 2. Spring框架的构成 3. Spring的发展历程 4. Spring的开发环境 4.1. Maven安装与配置 (1)Maven的下载与安装 (2)配置Maven的环境变量 (3)本地仓库的配置 (4…

景联文科技:用高质量数据采集标注赋能无人机技术,引领无人机迈入新纪元!

随着无人机技术的不断发展与革新,它已成为现代社会中一个前景无限的科技领域。 无人机应用领域 边境巡逻与安防:边境管理部门利用无人机监控边境线,防止非法越境和其他安全威胁,同时也能监控地面安保人员的工作状态和行动路线。 …

JVM的垃圾回收算法有哪些?从可达性分析算法开始,深入解读三大核心垃圾回收算法

导航: 【Java笔记踩坑汇总】Java基础JavaWebSSMSpringBootSpringCloud瑞吉外卖/黑马旅游/谷粒商城/学成在线设计模式面试题汇总性能调优/架构设计源码-CSDN博客 目录 一、概念准备 1.1 GC Roots 1.2 可达性分析算法 1.3 非可达对象被回收过程中的两次标记 1.4…

vue从入门到精通(一):初始Vue

一,Vue是什么 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架。Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层,不仅易于上手,还便于与第三方库或既有项目整合。另一方面,当与现代…

质量保障之精准测试!

一、背景与概念 随着软件测试行业的长足发展,测试理念、技术都在发生着日新月异的变化。因此一套完整的自动化测试用例对于每个软件公司都是不可或缺的,然而虽然有如此规模宏大的自动化案例集资源投入,同时也有大量人力的投入,但…

虚拟仿真云平台在教育应用中的优势和意义

虚拟仿真云实验教学平台作为一种新型的教学方法,近年来在高校教育中得到了十分广泛的应用。它通过模拟真实的实验场景和实验操作,让学生在计算机上进行实验操作和数据处理,为学生提供了更加便捷、可靠、有效的实验学习环境。本文,…

Python如何绘制直流电机开闭环特性曲线?matplotlib

import matplotlib.pyplot as plt from pylab import mplmpl.rcParams[font.sans-serif] [FangSong] # 指定默认字体 mpl.rcParams[axes.unicode_minus] False # 解决保存图像是负号-显示为方块的问题# 数据集1 n1 [1206, 1174, 1141, 1116, 1037, 986] Id1 [0.505, 0.55…

【多模态】30、GPT4V_OCR | GPT4V 在 OCR 数据集上效果测评

文章目录 一、背景二、测评2.1 场景文本识别2.2 手写文本识别2.3 手写数学公式识别2.4 图表结构识别(不考虑单元格中的文本内容)2.5 从内容丰富的文档中抽取信息 三、讨论 论文:EXPLORING OCR CAPABILITIES OF GPT-4V(ISION) : A QUANTITATIV…

centos7.6安装mysql

博客主页:花果山~程序猿-CSDN博客 文章分栏:MySQL之旅_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 1.在网页中寻找mysql…

【QT】QT环境搭建

本专栏内容为:QT学习专栏 通过本专栏的深入学习,你可以了解并掌握QT。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:QT 🚚代码仓库:小小unicorn的代码仓库🚚 🌹&#x1f…

WordPress 管理员密码重置方法汇总

最近明月碰到一个 WordPress 站长求助咨询,说是自己 WordPress 站点的管理员密码被恶意篡改了,对 WordPress 了解的都知道这一般都是恶意代码造成的,问题大多出在使用了所谓的破解版、去授权版的插件或者主题被植入了恶意代码、后门木马。明月…

洗地机哪个牌子好性价比高又实惠?高性价比洗地机推荐【避坑指南】

洗地机是一种智能清洁家具,具有强大的清洁能力,可快速有效地清洁各种地面污渍,操作简便,省时省力。其一键操作功能使其易于上手,无需频繁清洗拖布和更换水,大大提高了清洁效率。部分高端洗地机还具备智能感…

全国防灾减灾日主题活动投稿我可算找对了投稿方法

作为一名社区公众人员,我深知对外信息宣传的重要性。特别是在全国防灾减灾日这样的特殊时刻,我们不仅要向居民普及防灾减灾知识,还要通过媒体将社区的活动和成果展示给更多人。然而,在投稿的过程中,我最初却遭遇了诸多挑战。 起初,我采用传统的邮箱投稿方式,将精心撰写的稿件发…

小程序常用组件

小程序常用组件 1.组件的定义2.常用组件3.引入外部字体图标库4.组件样式5.示例代码 1.组件的定义 组件就是指微信定义的具有特殊功能的标签&#xff0c;在wxml中只能使用微信定义的标签。 2.常用组件 <view>&#xff1a;用于页面布局的块级组件&#xff0c;类似于html中的…

jmeter分布式集群压测

目的&#xff1a;通过多台机器同时运行 性能压测 脚本&#xff0c;模拟更好的并发压力 简单点&#xff1a;就是一个人&#xff08;控制机controler/调度机 master&#xff09;做一个项目的时候&#xff0c;压力有点大&#xff0c;会导致结果不理想&#xff0c;这时候找几个人&a…

OS复习笔记ch5-4-2

引言 承接上文我们介绍了信号量机制和应用信号量机制实现的进程同步和互斥&#xff0c;这一节我们将围绕一些经典问题对信号量机制展开更深入地探讨。 读者/写者问题 读者/写者问题与我们之前遇到的问题类型不同&#xff0c;它描述的是&#xff1a; 有读者和写者两组进程&am…

ohmyzsh的安装过程中失败拒绝连接问题的解决

1.打开官网Oh My Zsh - a delightful & open source framework for Zsh 在官网能看到下面的界面 有这两种自动安装的方式 个人本次选择的是: wget https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh -O - 1.打开终端输入安装的指令 sh -c "$(wget…

软件需求工程习题

1.&#xff08;面谈&#xff09;是需求获取活动中发生的需求工程师和用户间面对面的会见。 2.使用原型法进行需求获取&#xff0c;&#xff08;演化式&#xff09;原型必须具有健壮性&#xff0c;代码质量要从一开始就能达到最终系统的要求 3.利用面谈进行需求获取时&#xf…

K邻近算法

简介 介绍了非常简单的算法&#xff1a;K邻近算法&#xff0c;即KNN。 基本介绍 K-近邻算法&#xff08;K-Nearest Neighbors&#xff0c;简称KNN&#xff09;是一种基本且广泛应用的监督学习算法&#xff0c;主要用于分类和回归任务。 工作原理非常简答直观&#xff1a;所谓…