AI论文速读 |2024[IJCAI]TrajCL: 稳健轨迹表示:通过因果学习隔离环境混杂因素

题目: Towards Robust Trajectory Representations: Isolating Environmental Confounders with Causal Learning

作者:Kang Luo, Yuanshao Zhu, Wei Chen, Kun Wang(王琨), Zhengyang Zhou(周正阳), Sijie Ruan(阮思捷), Yuxuan Liang(梁宇轩)

机构:香港科技大学(广州),中国科学技术大学,北京理工大学
arXiv网址https://arxiv.org/abs/2404.14073

Cool Paperhttps://papers.cool/arxiv/2404.14073

关键词:轨迹表示,因果学习,环境混杂因素,稳健性,泛化能力

TL; DR: 本文提出了一个基于因果学习的轨迹建模框架TrajCL,通过构建结构因果模型来分析轨迹数据、环境因素和轨迹表示之间的相互作用,并设计了环境对齐模块和因果学习模块来隔离地理空间环境因素的混杂效应,从而提高轨迹表示的稳健性和泛化能力。

robust和robustness,在这里我都翻译为稳健性。

TrajCL同名的还有一篇发表在ICDE23的轨迹相似度检测的文章:Contrastive Trajectory Similarity Learning with Dual-Feature Attention
TrajCL

(那里的CL指的是对比学习(Contrastive Learning))

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

摘要

轨迹建模是指描述人类运动行为的特征,是理解移动模式的关键一步。 然而,现有的研究通常忽略地理空间背景的混杂影响,导致获得虚假的相关性和有限的泛化能力。 为了弥补这一差距,本文首先制定了结构因果模型(Structural Causal Model,SCM),从因果角度解读轨迹表示学习过程。 在 SCM 的基础上,进一步提出了一种基于因果学习的轨迹建模框架(TrajCL),该框架利用后门调整理论作为干预工具来消除地理空间上下文和轨迹之间的虚假相关性。 对两个真实世界数据集的大量实验验证了 TrajCL 显着增强了轨迹分类任务的性能,同时展示了卓越的泛化性和可解释性。

地理上下文对轨迹建模的影响

Q: 这篇论文试图解决什么问题?

A: 这篇论文试图解决的问题是如何在轨迹建模中消除地理空间环境因素带来的混杂效应,以提高轨迹表示的稳健性和泛化能力。具体来说,论文的主要贡献和解决的问题可以总结如下:

  1. 轨迹表示学习的因果视角:论文提出了一个结构因果模型(Structural Causal Model, SCM),从因果关系的角度分析轨迹表示学习过程中的变量关系,包括轨迹数据、环境因素以及轨迹表示之间的相互作用。
  2. 混杂因素的识别与隔离:论文指出,地理空间环境因素(如交通灯、道路类型等)可能会引入混杂效应,导致模型学习到的轨迹表示与实际的移动模式之间的关联性不具有因果性,而是由于环境因素的干扰产生的。
  3. 因果学习框架(TrajCL):为了解决上述问题,论文提出了一个基于因果学习的轨迹建模框架TrajCL,该框架利用后门调整理论(backdoor adjustment theory)作为干预工具,通过设计环境对齐模块和因果学习模块,来消除地理空间环境因素与轨迹之间的混杂关联。
  4. 实验验证:通过在两个真实世界的轨迹数据集上的广泛实验,论文验证了TrajCL在轨迹分类任务中的性能提升,展示了其在少数样本学习或不平衡样本学习场景下的优越泛化能力和可解释性。

总的来说,这篇论文的目标是通过因果学习方法,提高轨迹数据建模的稳健性和泛化能力,使其能够更好地理解和预测人类移动模式。

Q: 有哪些相关研究?

A: 论文中提到的相关研究主要分为两个领域:轨迹建模和因果推断。以下是一些关键的相关研究:

  1. 轨迹建模
    • 早期的基于启发式的方法,如使用空间网格方法来探索轨迹子结构的空间特性。
    • 利用局部和全局特征进行旅行模式分类的研究。
    • 将语义信息(如道路网络)融入轨迹分类的研究。
    • 利用深度学习模型,如循环神经网络(RNN)和变换器(Transformer)来捕捉轨迹的高阶运动模式。
  2. 因果推断
    • 传统因果推断研究,关注如何在不同分布下学习因果模型,并使用因果模型进行干预或反事实推断。
    • 因果表示学习,旨在结合深度学习和因果推断,广泛应用于计算机视觉、推荐系统、图数据挖掘等领域。
  3. 具体研究工作
    • [Lee and Han, 2008] 提出了一种基于空间网格的方法,用于轨迹分类。
    • [Zheng et al., 2008] 和 [Dodge et al., 2009] 提取了子网格和轨迹点的局部和全局特征。
    • [Xiao et al., 2017] 结合了语义信息,如道路网络,以分类车辆轨迹。
    • [Liu and Lee, 2017] 和 [Jiang et al., 2017] 使用了两种常见的RNN架构来捕捉高阶运动模式。
    • [Liu et al., 2019] 和 [Liang et al., 2021] 引入了段卷积加权机制和神经微分方程。
    • [Han et al., 2021] 和 [Yao et al., 2022] 通过图神经网络集成了道路网络的空间特征。
    • [Liang et al., 2022] 采用了先进的变换器架构来平衡轨迹建模的速度和准确性。
  4. 因果推断在其他领域的应用
    • [Li et al., 2023] 从因果角度研究了时间序列的分布变化。
    • [Deng et al., 2023] 构建了因果图来描述交通预测,并分析了时空特征与结果之间的因果关系。
    • [Xia et al., 2023] 应用因果推断来减轻时空图预测中的混杂效应。

这些研究表明,轨迹建模和因果推断是两个活跃的研究领域,并且在轨迹数据的分析和理解中具有重要的应用潜力。论文提出的TrajCL框架结合了这两个领域的技术,以提高轨迹表示的稳健性和泛化能力。

Q: 论文如何解决这个问题?

结构因果模型SCM

A: 论文通过提出一个名为TrajCL的因果学习框架来解决轨迹表示中的混杂效应问题。具体来说,TrajCL框架包括以下几个关键步骤:

  1. 结构因果模型(SCM):首先,论文建立了一个SCM来分析轨迹数据、环境因素和轨迹表示之间的因果关系。SCM帮助识别了环境因素作为混杂因子,可能在轨迹数据和轨迹表示之间引入的后门路径。
  2. 环境对齐模块:设计了一个环境对齐模块,该模块使用地理空间上下文来指导编码器分离因果和混杂表示。这个模块包括一个交叉注意力组件和一个分离分配组件,用于学习混杂感知和因果感知的软掩码。
  3. 因果学习模块:通过设计不同的策略来实现后门调整,包括分离学习策略、干预学习策略和最终的优化过程。分离学习策略使用多层感知器(MLP)对两个分支的特征进行分类,以区分因果特征和混杂特征。干预学习策略通过层次化操作混杂特征并将其与因果特征随机组合,以实现后门调整。
  4. 后门调整:利用后门调整理论,通过估计P(H|do(X))来阻断后门路径,其中do(·)表示do-calculus。这涉及到对环境因素进行干预,以消除其对轨迹表示的混杂影响。
  5. 实验验证:在两个真实世界的轨迹数据集上进行广泛的实验,验证了TrajCL在轨迹分类任务中的性能提升,并展示了其在少数样本学习和不平衡样本学习场景下的优越泛化能力和可解释性。

通过这些步骤,TrajCL能够有效地从人类轨迹中提取出稳健和领域不变的表示,同时减少对特定环境条件的过拟合风险。

TrajCL

Q: 论文做了哪些实验?

旅行模式分类

少样本

A: 论文中进行了多项实验来验证TrajCL框架的性能和稳健性。以下是实验的主要部分:

  1. 实验设置
    • 使用了两个公开的真实世界轨迹数据集:GeoLife和GrabPosisi。
    • 对轨迹数据进行了预处理,包括将原始轨迹分割成较短的子轨迹实例,并提取了地理空间上下文特征。
  2. 基线模型
    • 选择了五个代表性的基线模型,包括GRU、BiLSTM、GRU-D、STGN和TrajFormer,这些模型都是轨迹建模领域的常见模型。
  3. 性能比较
    • 在不同的模型设置下,比较了原始基线模型、加入环境信息后的模型以及应用了TrajCL框架后的模型的性能。
  4. 稳健性测试
    • 少数样本学习:将原始数据集划分为不同大小的子集,以模拟少数样本学习场景,并在不同模型上实施TrajCL。
    • 不平衡样本学习:通过调整训练集中类别比例,保持测试/验证集不变,以测试模型在不平衡样本条件下的性能。
  5. 消融研究
    • 通过移除TrajCL框架中的各个组件,来量化每个组件对整体性能的贡献。
  6. 解释性分析
    • 对环境对齐模块学习到的环境原型进行了可视化分析,以展示模型对不同地理空间上下文的感知能力。
  7. 超参数影响
    • 研究了环境代码簿大小和隐藏维度对模型性能的影响。
  8. 更多结果
    • 提供了在其他基线模型上实现TrajCL时在不平衡样本学习场景下的性能结果。

这些实验全面地评估了TrajCL框架在轨迹分类任务上的性能,特别是在面对环境混杂因素时的稳健性和泛化能力。实验结果表明,TrajCL能够有效地提高轨迹表示的稳健性,并且在多种不同的环境条件下都能取得良好的性能。

不平衡样本学习场景的探索

超参

Q: 总结一下论文的主要内容

A: 这篇论文的主要内容可以总结如下:

  1. 问题定义:论文针对的是轨迹建模中的一个关键问题,即如何从人类移动性数据中提取有用、泛化和简洁的轨迹表示,同时消除地理空间环境因素带来的混杂效应。
  2. 因果视角:通过构建结构因果模型(SCM),论文从因果关系的角度分析了轨迹表示学习过程中的变量关系,包括轨迹数据、环境因素和轨迹表示之间的相互作用。
  3. TrajCL框架:提出了一个基于因果学习的轨迹建模框架TrajCL,该框架利用后门调整理论作为干预工具,通过设计环境对齐模块和因果学习模块,来消除地理空间环境因素与轨迹之间的混杂关联。
  4. 环境对齐模块:该模块使用地理空间上下文来指导编码器分离因果和混杂表示,包括交叉注意力组件和分离分配组件。
  5. 因果学习模块:实施了多种策略来实现后门调整,包括分离学习策略、干预学习策略和最终的优化过程。
  6. 实验验证:在两个真实世界的轨迹数据集上进行了广泛的实验,验证了TrajCL在轨迹分类任务中的性能提升,并展示了其在少数样本学习和不平衡样本学习场景下的优越泛化能力和可解释性。
  7. 主要贡献:提出了一个新颖的因果视角来增强轨迹表示的稳健性,并通过实验验证了该框架的有效性。
  8. 未来工作:论文最后提出了一些未来工作的方向,包括扩展TrajCL的适用性以覆盖更多样化的环境,以及将其应用于更多现实的基于轨迹的任务,如旅行时间估计。

**:提出了一个新颖的因果视角来增强轨迹表示的稳健性,并通过实验验证了该框架的有效性。
8. 未来工作:论文最后提出了一些未来工作的方向,包括扩展TrajCL的适用性以覆盖更多样化的环境,以及将其应用于更多现实的基于轨迹的任务,如旅行时间估计。

总体而言,这篇论文通过引入因果学习的方法,为处理轨迹数据中的混杂效应提供了一种新的解决方案,并在理论和实践上都取得了积极的成果。

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/9294.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SAP-PP-MM特殊库存的生产发料

如果有个物料是在特殊库存E,那么往生产订单发料是如何确定哪一个组件消耗这个特殊库存呢? 在生产订单中有哪些标记确定特殊库存?确定销售订单和行项目? 通过上图可以看到特殊库存标记1,也就是单独客户库存。 其他的特…

洗地机什么品牌好?洗地机怎么选?618洗地机选购指南

随着科技的飞速发展,洗地机以其高效的清洁能力、稳定的性能和用户友好的设计而闻名,不仅可以高效吸尘、拖地,还不用手动洗滚布,已经逐渐成为现代家庭不可或缺的清洁助手。然而,在众多品牌和型号中,如何选择…

C++语言·string类

1. 为什么有string类 C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数(strcpy,strcat),但是这些库函数与字符串是分离开的,不太符合OOP(Object Oriented Programming面向对…

【深耕 Python】Quantum Computing 量子计算机(3)重要数学公式一览

写在前面 往期量子计算机博客: 【深耕 Python】Quantum Computing 量子计算机(1)图像绘制基础 【深耕 Python】Quantum Computing 量子计算机(2)绘制电子运动平面波 正文 偏微分: 交换关系&#xff…

GtkButton事件处理、事件的捕获、鼠标事件等

事件 事件处理 GTK 所提供的工具库与其应用程序都是基于事件触发机制来管理, 所有的应用程序都是基于事件驱动。 如果没有事件发生, 应用程序将处于等待状态, 不会执行任何操作, 一旦事件发生, 将根据不同的事件做出…

Offer必备算法37_记忆化搜索_五道力扣题详解(由易到难)

目录 记忆化搜索概念和使用场景 ①力扣509. 斐波那契数 解析代码1_循环 解析代码2_暴搜递归 解析代码3_记忆化搜索 解析代码4_动态规划 ②力扣62. 不同路径 解析代码1_暴搜递归(超时) 解析代码2_记忆化搜索 解析代码3_动态规划 ③力扣300. 最…

Java12基础(Package包 作用域 String字符串)

目录 一. Package包 import关键字 命名规范 二. 作用域 三. String字符串(进阶) 创建方式: 内存情况: 1. 字符串的搜索 2. trim()方法 3. 替换字符串 4. 分割字符串 5. 拼接字符串 6. 格式化字符串 7. 类型转换 8. 转换为char[ ]字符数组 9. 字符编码 10. Str…

Navicat导入sql报错[Err] 1046 - No database selected

Navicat导入sql报错[Err] 1046 - No database selected ​ 今天系统重装了,就很完蛋。所有东西都重新下载安装。向Navicat导入sql的时候导入失败: 报错[Err] 1046 - No database selected。我很疑惑地又导了几次。当然又全都失败. 错误造成原因&#x…

ardupilot的固定翼飞行模式

飞行模式 APM所有的飞行模式都在对应的机型的文件夹下的mode.h里面有定义,针对于不同的模型,功能函数在基类中Mode中都是以纯虚函数实现了, 然后在继承的子类中重新实现它,以实现多态。 takeoff模式 参见网址在 ArduPlane 4.0 及更高版本中,自动起飞本身也是一种模式(…

Redis持久化策略——Java全栈知识(17)

Redis持久化 1、Redis 持久化的三种方式 1、RDB: 以快照的方式将此刻 Redis 中的数据以二进制的文件形式保存在磁盘中。 RDB 的优点是:快照文件小、恢复速度快,适合做备份和灾难恢复。 RDB 的缺点是:定期更新可能会丢数据&#…

20K薪资要什么水平?来看看25岁测试工程师的面试过程…_测试工程师薪资20k(2)

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化! 由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、…

阿里云最新重磅发布:通义千问2.5模型更强、5到10行代码搭建企业RAG应用、代码助手通义灵码推企业版

速览: 5月9日阿里云举办“阿里云AI智领者峰会”,会上发布一系列重磅产品,通义千问模型性能更强,通义灵码、阿里云百炼平台、通义千问App等均有重要信息发布。 会上阿里云发布正式发布通义千问2.5,中文性能全面赶超GPT-…

我们的小程序每天早上都白屏,真相是。。。

大家好,我是程序员鱼皮。最近我们在内测一款面试刷题小程序,没错,就是之前倒下的 “面试鸭”! 在我们的内测交流群中,每天早上都会有同学反馈:打开小程序空白,没任何内容且登录不上。 然后过了…

PT:fix_eco_power用法

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 ICC2中没有直接修leakage/power的命令,需要在scenario status中设置leakage_power和dynamic_power的开关,结合place_opt/clock_opt.flow.enable_power true来使用。 innovus中专门的命令可以去优…

单单单单单の刁队列

在数据结构的学习中,队列是一种常用的线性数据结构,它遵循先进先出(FIFO)的原则。而单调队列是队列的一种变体,它在特定条件下保证了队列中的元素具有某种单调性质,例如单调递增或单调递减。单调队列在处理…

游戏辅助 -- 三种分析角色坐标方法(CE、xdbg、龙龙遍历工具)

所用工具下载地址: https://pan.quark.cn/s/d54e7cdc55e6 在上次课程中,我们成功获取了人物对象的基址:[[[0xd75db8]1C]28],而人物血量的地址则是基址再加上偏移量278。 接下来,我们需要执行以下步骤来进一步操作&a…

新版security demo(二)前端

写这篇博客,刚好换了台电脑,那就借着这个demo复习下VUE环境的搭建。 一、前端项目搭建 1、安装node 官网下载安装即可。 2、安装脚手架 npm install -g vue-cli 使用脚手架搭建一个demo前端项目 vue init webpack 项目名称 3、安装依赖 这里安装…

【OpenHarmony 实战开发】 做一个 loading加载动画

本篇文章介绍了如何实现一个简单的 loading 加载动画,并且在文末提供了一个 demo 工程供读者下载学习。作为一个 OpenHarmony 南向开发者,接触北向应用开发并不多。北向开发 ArkUI 老是改来改去,对笔者这样的入门选手来说学习成本其实非常大&…

【每日力扣】98. 验证二叉搜索树 与 108. 将有序数组转换为二叉搜索树

🔥 个人主页: 黑洞晓威 😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害 98. 验证二叉搜索树 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&a…

【C++】适配器模式

文章目录 前言 1. 适配器的介绍2. 仿函数2.1 sort函数的模板参数2.2 priority_queue类的模板参数 3. priority_queue模拟实现3. stack & queue 模拟实现3.1 deque的介绍3.2 deque的优点与缺陷3.3 STL标准库中对于stack和queue的模拟实现 前言 C中的适配器是一种设计模式&am…