Offer必备算法37_记忆化搜索_五道力扣题详解(由易到难)

目录

记忆化搜索概念和使用场景

①力扣509. 斐波那契数

解析代码1_循环

解析代码2_暴搜递归

解析代码3_记忆化搜索

解析代码4_动态规划

②力扣62. 不同路径

解析代码1_暴搜递归(超时)

解析代码2_记忆化搜索

解析代码3_动态规划

③力扣300. 最长递增子序列

解析代码1_爆搜递归(超时)

解析代码2_记忆化搜索

解析代码3_动态规划

④力扣375. 猜数字大小 II

解析代码1_爆搜递归(超时)

解析代码2_记忆化搜索

⑤力扣329. 矩阵中的最长递增路径

解析代码1_爆搜递归(超时)

解析代码2_记忆化搜索

本篇完。


记忆化搜索概念和使用场景

记忆化搜索是一种典型的空间换时间的思想,可以看成带备忘录的爆搜递归。

        搜索的低效在于没有能够很好地处理重叠子问题。在搜索过程中,会有很多重复计算,如果我们能记录一些状态的答案,就可以减少重复搜索量。动态规划虽然比较好地处理了重叠子问题,但是在有些拓扑关系比较复杂的题目面前,又显得无奈。记忆化搜索正是在这样的情况下产生的,它采用搜索的形式和动态规划中递推的思想将这两种方法有机地综合在一起,扬长避短,简单实用,在信息学中有着重要的作用。

        根据记忆化搜索的思想,它是解决重复计算,而不是重复生成,也就是说,这些搜索必须是在搜索扩展路径的过程中分步计算的题目,也就是“搜索答案与路径相关″的题目,而不能是搜索一个路径之后才能进行计算的题目,必须要分步计算,并且搜索过程中,一个搜索结果必须可以建立在同类型问题的结果上,也就是类似于动态规划解决的那种。

        记忆化搜索的典型应用场景是可能经过不同路径转移到相同状态的dfs问题。更明确地说,当我们需要在有层次结构的图(不是树,即当前层的不同节点可能转移到下一层的相同节点)中自上而下地进行dfs搜索时,大概率我们都可以通过记忆化搜索的技巧降低时间复杂度。

动态规划和记忆化搜索都是在爆搜的基础上优化。《算法导论》里也把记忆化搜索看成动态规划。


①力扣509. 斐波那契数

509. 斐波那契数

难度 简单

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30
class Solution {
public:int fib(int n) {}
};

解析代码1_循环

求斐波那契数是很经典的一道题,有多种解法。

        下面会从递归解法得出记忆化搜索解法,在得出动态规划解法,循环的解法也可以看作动态规划的状态压缩,完成闭环。

class Solution {
public:int fib(int n) {if (n < 2)return n;int fib1 = 0, fib2 = 0, ret = 1;for (int i = 2; i <= n; ++i){fib1 = fib2;fib2 = ret;ret = fib1 + fib2;}return ret;}
};


解析代码2_暴搜递归

暴搜递归:

  • 递归含义:给 dfs 一个使命,给它一个数 n ,返回第 n 个斐波那契数的值。
  • 函数体:斐波那契数的递推公式。
  • 递归出口:当 n == 0 或者 n == 1 时,不用套公式。
class Solution {
public:int fib(int n) {return dfs(n);}int dfs(int n){if(n <= 1)return n;return dfs(n - 1) + dfs(n - 2);}
};


解析代码3_记忆化搜索

记忆化搜索:

  • 在递归的基础上加上一个备忘录(所以记忆化搜索也叫带备忘录的递归)。
  • 每次进入递归的时候,去备忘录里面看看。
  • 每次返回的时候,将结果加入到备忘录里面。
class Solution {int memo[31];
public:int fib(int n) {memset(memo, -1, sizeof(memo));return dfs(n);}int dfs(int n){if(n <= 1)return n;if(memo[n] != -1)return memo[n];memo[n] = dfs(n - 1) + dfs(n - 2);return memo[n];}
};


解析代码4_动态规划

动态规划已经写过很多题了,这里根据记忆化搜索得出动态规划的解法:

  • 递归含义:状态表示
  • 函数体:状态转移方程
  • 递归出口:初始化
  • 填表顺序:填备忘录的顺序
  • 返回值:备忘录的值

        可以看出都是类似的,因为两者本质都是一样的,都是在爆搜的基础上优化。《算法导论》里也把记忆化搜索看成动态规划。

        所以很多时候都可以把爆搜递归的代码改成记忆化搜索,再改成动态规划,不过爆搜改记忆化搜索已经完成时间的优化了,没太多必要改成动态规划了。

class Solution {
public:int fib(int n) {if(n == 0)return 0;vector<int> dp(n + 1);dp[1] = 1;for(int i = 2; i <= n; ++i){dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};


②力扣62. 不同路径

62. 不同路径

难度 中等

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9
class Solution {
public:int uniquePaths(int m, int n) {}
};

解析代码1_暴搜递归(超时)

  • 递归含义:给 dfs 一个下标,返回从 [0, 0] 位置走到 [i, j] 位置一共有多少种方法。
  • 函数体:只要知道到达上面位置的方法数以及到达左边位置的方法数,然后累加起来即可。
  • 递归出口:当下标越界的时候返回 0 ,当位于起点的时候,返回 1 。
class Solution {
public:int uniquePaths(int m, int n) {return dfs(m, n);}int dfs(int sr, int sc){if(sr == 0 || sc == 0)return 0;if(sr == 1 && sc == 1)return 1;return dfs(sr - 1, sc) + dfs(sr, sc - 1);}
};


解析代码2_记忆化搜索

记忆化搜索解法:

  • 加上一个备忘录。
  • 每次进入递归的时候,去备忘录里面看看。
  • 每次返回的时候,将结果加入到备忘录里面。
class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> memo(m + 1, vector<int>(n + 1));return dfs(m, n, memo);}int dfs(int sr, int sc, vector<vector<int>>& memo){if(sr == 0 || sc == 0)return 0;if(sr == 1 && sc == 1)return 1;if(memo[sr][sc] != 0)return memo[sr][sc];memo[sr][sc] = dfs(sr - 1, sc, memo) + dfs(sr, sc - 1, memo);return memo[sr][sc];}
};


解析代码3_动态规划

根据记忆化搜索得出动态规划的解法:

  • 递归含义:状态表示
  • 函数体:状态转移方程
  • 递归出口:初始化
  • 填表顺序:填备忘录的顺序
  • 返回值:备忘录的值
class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));dp[1][1] = 1;for(int i = 1; i <= m; ++i){for(int j = 1; j <= n; ++j){if(i == 1 && j == 1)continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m][n];}
};


③力扣300. 最长递增子序列

300. 最长递增子序列

难度 中等

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 10^4

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?
class Solution {
public:int lengthOfLIS(vector<int>& nums) {}
};

解析代码1_爆搜递归(超时)

  • 递归含义:给 dfs 一个数 i ,返回以 i 位置为起点的最长增子序列的长度。
  • 函数体:遍历 i 后面的所有位置,看谁能加到 i 这个元素的后面。统计所有情况下的最大值。
  • 递归出口:因为是判断之后再进入递归的,因此没有出口。
class Solution {
public:int lengthOfLIS(vector<int>& nums) {int sz = nums.size(), ret = 1;for(int i = 0; i < sz; ++i){ret = max(ret, dfs(i, nums));}return ret;}int dfs(int pos, vector<int>& nums){int sz = nums.size(), ret = 1;for(int i = pos + 1; i < sz; ++i){if(nums[i] > nums[pos])ret = max(ret, dfs(i, nums) + 1);}return ret;}
};


解析代码2_记忆化搜索

记忆化搜索解法:

  • 加上一个备忘录。
  • 每次进入递归的时候,去备忘录里面看看。
  • 每次返回的时候,将结果加入到备忘录里面。
class Solution {
public:int lengthOfLIS(vector<int>& nums) {int sz = nums.size(), ret = 1;vector<int> memo(sz);for(int i = 0; i < sz; ++i){ret = max(ret, dfs(i, nums, memo));}return ret;}int dfs(int pos, vector<int>& nums, vector<int>& memo){if(memo[pos] != 0)return memo[pos];int sz = nums.size(), ret = 1;for(int i = pos + 1; i < sz; ++i){if(nums[i] > nums[pos])ret = max(ret, dfs(i, nums, memo) + 1);}memo[pos] = ret;return ret;}
};


解析代码3_动态规划

根据记忆化搜索得出动态规划的解法:

  • 递归含义:状态表示
  • 函数体:状态转移方程
  • 递归出口:初始化
  • 填表顺序:填备忘录的顺序
  • 返回值:备忘录的值

        注意这里填表顺序有点不一样,因为记忆化搜索填pos位置的值的时候,依赖的是pos后面的值,所以动态规划解法的代码,填表顺序是从后往前填表。

class Solution {
public:int lengthOfLIS(vector<int>& nums) {int sz = nums.size(), ret = 1;vector<int> dp(sz, 1);for(int i = sz - 2; i >= 0; --i){for(int j = i + 1; j < sz; ++j){if(nums[j] > nums[i])dp[i] = max(dp[i], dp[j] + 1);}ret = max(ret, dp[i]);}return ret;}
};


④力扣375. 猜数字大小 II

375. 猜数字大小 II

难度 中等

我们正在玩一个猜数游戏,游戏规则如下:

  1. 我从 1 到 n 之间选择一个数字。
  2. 你来猜我选了哪个数字。
  3. 如果你猜到正确的数字,就会 赢得游戏 。
  4. 如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
  5. 每当你猜了数字 x 并且猜错了的时候,你需要支付金额为 x 的现金。如果你花光了钱,就会 输掉游戏 。

给你一个特定的数字 n ,返回能够 确保你获胜 的最小现金数,不管我选择那个数字 。

示例 1:

输入:n = 10
输出:16
解释:制胜策略如下:
- 数字范围是 [1,10] 。你先猜测数字为 7 。- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $7 。- 如果我的数字更大,则下一步需要猜测的数字范围是 [8,10] 。你可以猜测数字为 9 。- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $9 。- 如果我的数字更大,那么这个数字一定是 10 。你猜测数字为 10 并赢得游戏,总费用为 $7 + $9 = $16 。- 如果我的数字更小,那么这个数字一定是 8 。你猜测数字为 8 并赢得游戏,总费用为 $7 + $9 = $16 。- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,6] 。你可以猜测数字为 3 。- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $3 。- 如果我的数字更大,则下一步需要猜测的数字范围是 [4,6] 。你可以猜测数字为 5 。- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $5 。- 如果我的数字更大,那么这个数字一定是 6 。你猜测数字为 6 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。- 如果我的数字更小,那么这个数字一定是 4 。你猜测数字为 4 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,2] 。你可以猜测数字为 1 。- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $1 。- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $7 + $3 + $1 = $11 。
在最糟糕的情况下,你需要支付 $16 。因此,你只需要 $16 就可以确保自己赢得游戏。

示例 2:

输入:n = 1
输出:0
解释:只有一个可能的数字,所以你可以直接猜 1 并赢得游戏,无需支付任何费用。

示例 3:

输入:n = 2
输出:1
解释:有两个可能的数字 1 和 2 。
- 你可以先猜 1 。- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $1 。- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $1 。
最糟糕的情况下,你需要支付 $1 。

提示:

  • 1 <= n <= 200
class Solution {
public:int getMoneyAmount(int n) {}
};

解析代码1_爆搜递归(超时)

  • 递归含义:给 dfs 一个区间 [left, right] ,返回在这个区间上能完胜的最小费用
  • 函数体:选择 [left, right] 区间上的任意一个数作为头结点,然后递归分析左右子树。 求出所有情况下的最小值。因为要得到这个区间上能完胜的最小费用,所以选择左右子树时要求最大值。
  • 递归出口:当 left >= right 的时候,直接返回 0 。
class Solution {
public:int getMoneyAmount(int n) {return dfs(1, n);}int dfs(int left, int right){if(left >= right)return 0;int ret = INT_MAX;for(int i = left; i <= right; ++i){ret = min(ret, max(dfs(left, i - 1), dfs(i + 1, right)) + i);}return ret;}
};


解析代码2_记忆化搜索

记忆化搜索解法:

  • 加上一个备忘录。
  • 每次进入递归的时候,去备忘录里面看看。
  • 每次返回的时候,将结果加入到备忘录里面。
class Solution {int memo[201][201];
public:int getMoneyAmount(int n) {return dfs(1, n);}int dfs(int left, int right){if(left >= right)return 0;if(memo[left][right] != 0)return memo[left][right];int ret = INT_MAX;for(int i = left; i <= right; ++i){ret = min(ret, max(dfs(left, i - 1), dfs(i + 1, right)) + i);}memo[left][right] =ret;return ret;}
};


⑤力扣329. 矩阵中的最长递增路径

329. 矩阵中的最长递增路径

难度 困难

给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。

示例 1:

输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
输出:4 
解释:最长递增路径为 [1, 2, 6, 9]。

示例 2:

输入:matrix = [[3,4,5],[3,2,6],[2,2,1]]
输出:4 
解释:最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

示例 3:

输入:matrix = [[1]]
输出:1

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • 0 <= matrix[i][j] <= 2^31 - 1
class Solution {
public:int longestIncreasingPath(vector<vector<int>>& matrix) {}
};

解析代码1_爆搜递归(超时)

  • 递归含义:给 dfs 一个下标 [i, j] ,返回从这个位置开始的最长递增路径的长度。
  • 函数体:上下左右四个方向看一看,哪里能过去就过去,统计四个方向上的最大长度。
  • 递归出口:因为是先判断再进入递归,因此没有出口。
class Solution {int dx[4] = {0, 0, -1, 1};int dy[4] = {1, -1, 0, 0};int m = 0, n = 0;
public:int longestIncreasingPath(vector<vector<int>>& matrix) {m = matrix.size(), n = matrix[0].size();int ret = 0;for(int i = 0; i < m; ++i){for(int j = 0; j < n; ++j){ret = max(ret, dfs(i, j, matrix));}}return ret + 1; // 加上自己}int dfs(int sr, int sc, vector<vector<int>>& matrix){int ret = 0;for(int i = 0; i < 4; ++i){int x = sr + dx[i], y = sc + dy[i];if(x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[sr][sc]){ret = max(ret, dfs(x, y, matrix) + 1);}}return ret;}
};


解析代码2_记忆化搜索

记忆化搜索解法:

  • 加上一个备忘录。
  • 每次进入递归的时候,去备忘录里面看看。
  • 每次返回的时候,将结果加入到备忘录里面。
class Solution {int dx[4] = {0, 0, -1, 1};int dy[4] = {1, -1, 0, 0};int m = 0, n = 0;int memo[201][201];
public:int longestIncreasingPath(vector<vector<int>>& matrix) {m = matrix.size(), n = matrix[0].size();int ret = 0;for(int i = 0; i < m; ++i){for(int j = 0; j < n; ++j){ret = max(ret, dfs(i, j, matrix));}}return ret + 1; // 加上自己}int dfs(int sr, int sc, vector<vector<int>>& matrix){if(memo[sr][sc] != 0)return memo[sr][sc];int ret = 0;for(int i = 0; i < 4; ++i){int x = sr + dx[i], y = sc + dy[i];if(x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[sr][sc]){ret = max(ret, dfs(x, y, matrix) + 1);}}memo[sr][sc] = ret;return ret;}
};


本篇完。

下一篇是贪心算法的第四部分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/9286.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java12基础(Package包 作用域 String字符串)

目录 一. Package包 import关键字 命名规范 二. 作用域 三. String字符串(进阶) 创建方式: 内存情况: 1. 字符串的搜索 2. trim()方法 3. 替换字符串 4. 分割字符串 5. 拼接字符串 6. 格式化字符串 7. 类型转换 8. 转换为char[ ]字符数组 9. 字符编码 10. Str…

Navicat导入sql报错[Err] 1046 - No database selected

Navicat导入sql报错[Err] 1046 - No database selected ​ 今天系统重装了&#xff0c;就很完蛋。所有东西都重新下载安装。向Navicat导入sql的时候导入失败&#xff1a; 报错[Err] 1046 - No database selected。我很疑惑地又导了几次。当然又全都失败. 错误造成原因&#x…

ardupilot的固定翼飞行模式

飞行模式 APM所有的飞行模式都在对应的机型的文件夹下的mode.h里面有定义,针对于不同的模型,功能函数在基类中Mode中都是以纯虚函数实现了, 然后在继承的子类中重新实现它,以实现多态。 takeoff模式 参见网址在 ArduPlane 4.0 及更高版本中,自动起飞本身也是一种模式(…

Redis持久化策略——Java全栈知识(17)

Redis持久化 1、Redis 持久化的三种方式 1、RDB&#xff1a; 以快照的方式将此刻 Redis 中的数据以二进制的文件形式保存在磁盘中。 RDB 的优点是&#xff1a;快照文件小、恢复速度快&#xff0c;适合做备份和灾难恢复。 RDB 的缺点是&#xff1a;定期更新可能会丢数据&#…

20K薪资要什么水平?来看看25岁测试工程师的面试过程…_测试工程师薪资20k(2)

既有适合小白学习的零基础资料&#xff0c;也有适合3年以上经验的小伙伴深入学习提升的进阶课程&#xff0c;涵盖了95%以上软件测试知识点&#xff0c;真正体系化&#xff01; 由于文件比较多&#xff0c;这里只是将部分目录截图出来&#xff0c;全套包含大厂面经、学习笔记、…

阿里云最新重磅发布:通义千问2.5模型更强、5到10行代码搭建企业RAG应用、代码助手通义灵码推企业版

速览&#xff1a; 5月9日阿里云举办“阿里云AI智领者峰会”&#xff0c;会上发布一系列重磅产品&#xff0c;通义千问模型性能更强&#xff0c;通义灵码、阿里云百炼平台、通义千问App等均有重要信息发布。 会上阿里云发布正式发布通义千问2.5&#xff0c;中文性能全面赶超GPT-…

我们的小程序每天早上都白屏,真相是。。。

大家好&#xff0c;我是程序员鱼皮。最近我们在内测一款面试刷题小程序&#xff0c;没错&#xff0c;就是之前倒下的 “面试鸭”&#xff01; 在我们的内测交流群中&#xff0c;每天早上都会有同学反馈&#xff1a;打开小程序空白&#xff0c;没任何内容且登录不上。 然后过了…

PT:fix_eco_power用法

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 ICC2中没有直接修leakage/power的命令,需要在scenario status中设置leakage_power和dynamic_power的开关,结合place_opt/clock_opt.flow.enable_power true来使用。 innovus中专门的命令可以去优…

单单单单单の刁队列

在数据结构的学习中&#xff0c;队列是一种常用的线性数据结构&#xff0c;它遵循先进先出&#xff08;FIFO&#xff09;的原则。而单调队列是队列的一种变体&#xff0c;它在特定条件下保证了队列中的元素具有某种单调性质&#xff0c;例如单调递增或单调递减。单调队列在处理…

游戏辅助 -- 三种分析角色坐标方法(CE、xdbg、龙龙遍历工具)

所用工具下载地址&#xff1a; https://pan.quark.cn/s/d54e7cdc55e6 在上次课程中&#xff0c;我们成功获取了人物对象的基址&#xff1a;[[[0xd75db8]1C]28]&#xff0c;而人物血量的地址则是基址再加上偏移量278。 接下来&#xff0c;我们需要执行以下步骤来进一步操作&a…

新版security demo(二)前端

写这篇博客&#xff0c;刚好换了台电脑&#xff0c;那就借着这个demo复习下VUE环境的搭建。 一、前端项目搭建 1、安装node 官网下载安装即可。 2、安装脚手架 npm install -g vue-cli 使用脚手架搭建一个demo前端项目 vue init webpack 项目名称 3、安装依赖 这里安装…

【OpenHarmony 实战开发】 做一个 loading加载动画

本篇文章介绍了如何实现一个简单的 loading 加载动画&#xff0c;并且在文末提供了一个 demo 工程供读者下载学习。作为一个 OpenHarmony 南向开发者&#xff0c;接触北向应用开发并不多。北向开发 ArkUI 老是改来改去&#xff0c;对笔者这样的入门选手来说学习成本其实非常大&…

【每日力扣】98. 验证二叉搜索树 与 108. 将有序数组转换为二叉搜索树

&#x1f525; 个人主页: 黑洞晓威 &#x1f600;你不必等到非常厉害&#xff0c;才敢开始&#xff0c;你需要开始&#xff0c;才会变的非常厉害 98. 验证二叉搜索树 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&a…

【C++】适配器模式

文章目录 前言 1. 适配器的介绍2. 仿函数2.1 sort函数的模板参数2.2 priority_queue类的模板参数 3. priority_queue模拟实现3. stack & queue 模拟实现3.1 deque的介绍3.2 deque的优点与缺陷3.3 STL标准库中对于stack和queue的模拟实现 前言 C中的适配器是一种设计模式&am…

物联网实战--平台篇之(四)账户后台交互

目录 一、交互逻辑 二、请求验证码 三、帐号注册 四、帐号/验证码登录 五、重置密码 本项目的交流QQ群:701889554 物联网实战--入门篇https://blog.csdn.net/ypp240124016/category_12609773.html 物联网实战--驱动篇https://blog.csdn.net/ypp240124016/category_12631…

线程安全的概念及原因

1.观察线程不安全 public class ThreadDemo {static class Counter {public int count 0;void increase() {count;}}public static void main(String[] args) throws InterruptedException {final Counter counter new Counter();Thread t1 new Thread(() -> {for (int …

进一步分析并彻底解决 Flink container exit 143 问题

你好&#xff0c;我是 shengjk1&#xff0c;多年大厂经验&#xff0c;努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注&#xff01;你会有如下收益&#xff1a; 了解大厂经验拥有和大厂相匹配的技术等 希望看什么&#xff0c;评论或者私信告诉我&#xff01; 文章目录 一…

AlibabaCloud微服务下的链路追踪系统实战详解

&#x1f680; 作者 &#xff1a;“二当家-小D” &#x1f680; 博主简介&#xff1a;⭐前荔枝FM架构师、阿里资深工程师||曾任职于阿里巴巴担任多个项目负责人&#xff0c;8年开发架构经验&#xff0c;精通java,擅长分布式高并发架构,自动化压力测试&#xff0c;微服务容器化k…

如何利用AI技术提升内容生产的效率和质量

目录 前言1 自动化内容生成1.1 文章生成1.2 视频制作1.3 音频合成 2 内容分发与推广2.1 智能内容推荐2.2 社交媒体管理 3 内容分析与优化3.1 用户反馈分析3.2 内容效果评估 结语 前言 在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;技术对内容生产、分发和优…

MFC实现点击列表头进行排序

MFC实现点击列表头排序 1、添加消息处理函数 在列表窗口右键&#xff0c;类向导。选择 IDC_LIST1&#xff08;我的列表控件的ID&#xff09;&#xff0c;消息选择LVN_COLUMNCLICK。 2、消息映射如下 然后会在 cpp 文件中生成以下函数 void CFLashSearchDlg::OnLvnColumnclic…