MATLAB实现蚁群算法优化柔性车间调度(ACO-fjsp)

蚁群算法优化车间调度的步骤可以分为以下几个主要阶段:

1.初始化阶段:
设置算法参数,如信息素浓度、启发式因子等。这些参数将影响蚂蚁在选择路径时的决策过程。
确定车间调度的具体问题规模,包括工件数量、机器数量以及每个工件在各机器上的加工时间等。
2.构建解阶段:
将蚂蚁(即搜索代理)放置在初始位置,这通常代表调度的起始点。
每只蚂蚁根据路径上的信息素浓度和启发式信息,按概率选择下一个要访问的节点(在这里可能是指工件或机器)。这个过程模拟了蚂蚁在寻找食物时根据信息素和可见性(即距离、时间等因素)来选择路径的行为。
蚂蚁在车间调度问题中的移动,代表了对工件加工顺序和机器分配的探索。通过多次迭代,蚂蚁们能够逐渐发现更优的调度方案。
3.信息素更新阶段:
当所有蚂蚁都完成了一次路径搜索后,根据它们的搜索结果来更新路径上的信息素。这通常涉及到两个方面:一是增加找到较优解路径上的信息素(正反馈),二是减少其他路径上的信息素(由于挥发或负反馈)。
信息素的更新规则可能因具体实现而异,但通常都会考虑到路径的长度、质量以及蚂蚁走过的次数等因素。
4.收敛判断与优化阶段:
检查算法是否满足停止条件,如达到最大迭代次数、找到满足精度要求的解或解的质量在连续多次迭代中无明显改进等。
如果满足停止条件,则输出当前找到的最优解;否则,返回到构建解阶段继续搜索。
5.后处理与优化展示

柔性车间调度的模型如下:


1.目标函数:
柔性车间调度的目标函数通常包括多个方面,如最大完工时间最小、总完工时间最小、最大负荷的机器负荷最小等。这些目标可以根据实际需求进行选择或组合。一般采用最大完工时间最小:
f_1 = \min(C_{\max})
其中,C_{\max} 表示所有工件中的最晚完工时间。

其中,C_i 表示第i个工件的完工时间,n是工件的总数。

2.约束条件:
柔性车间调度的约束条件通常包括以下几点:

(1)同一台机器同一时刻只能加工一个工件。
(2)同一工件的同一道工序在同一时刻被加工的机器数是一。即,一个工序不能同时在多台机器上进行。
(3)任意工序开始加工后不能中断。这意味着一旦一个工序开始,就必须连续进行直到完成。
(4)各个工件之间不存在优先级的差别。除非特别指定,否则所有工件都被视为具有相同的优先级。
(5)同一工件的工序之间存在先后约束。即,一个工件的一个工序必须在它之前的工序完成后才能开始。
(6)所有工件在零时刻都可以被加工。这意味着没有工件在开始时就有延迟。
这些约束条件确保了调度方案的可行性和实际性。在实际应用中,可能还需要考虑其他特定的约束条件,如机器的可用性、工件的交货期等。

算例数据如下:

初始加工明细表
工件号工序M1M2M3M4M5M6
11346-1-1-1
12-1-110-1-1-1
13-11298-15
14-17-123-1
21-111-167-1
22-18-1-1-16
23-1-1511-113
24788-1-1-1
31-1-13-1-1-1
32233-1-1-1
33-1-11045-1
3410-111-13-1
41-1-112-1-17
42899-112-1
43-1-12-1-1-1
44-1-1-11112-1
51-1-158-19
52-1-1-113128
53356-1-1-1
54-1-1-156-1
61579-1-1-1
62-1-1115-110
63-1-1-1439
64-1-1-1510-1

完整代码见:https://download.csdn.net/download/corn1949/89173025

MATLAB主程序如下:

%% 蚁群算法
clc;close all;clear all;warning off;% 清除变量
rand('seed', 100);
randn('seed', 100);
format long g;
addpath(genpath('mytoolbox'));global jobtable mIDsetcell jobnumber machinenumber S20;
global N1 N2 indexM K;filename='数据.xlsx';
[adata201,bdata201,cdata201]=xlsread(filename);
jobtable=adata201;% [工件号 工序 各个机器的时间]N1=size(jobtable,1);% 工序总数
jobnumber=length(unique(jobtable(:,1)));% 工件数
machinenumber=size(jobtable,2)-2;% 机器数S20=[];
for j=1:jobnumberopernumber=sum(jobtable(:,1)==j);Sj=j*ones(1,opernumber);S20=[S20,Sj];
end% 变量范围
lb=1*ones(1,N1);
ub=zeros(1,N1);
mIDsetcell=cell(N1,1);
for i=1:N1index201= find(jobtable(i,3:end)>0);ub(i)=length(index201);% 可用机器数mIDsetcell{i,1}=index201;
endS0=ub-lb+1;
indexM=S2indexMfun(S0);% 变量层分割
K=length(lb);
nodenumber=sum(S0);
E=nearfun(indexM,K,nodenumber);
N2=sum(S0);%% 蚁群算法参数
maxgen=100;%蚁群迭代次数
popsize=20;%蚂蚁数
alpha=3;% xinx
beta=2;
rho=0.1;
Q=1;dmat201=ones(N1,N1);
Eta201=1./dmat201;
index201=1:N1;
Tau201=ones(N1,N1)*0.1;%信息素初始化dmat202=ones(N2,N2);
Eta202=1./dmat202;
Tau202=ones(N2,N2)*0.1;%信息素初始化tracemataco=zeros(maxgen,2);
%% 蚁群算法构造路径
wait_hand = waitbar(0,'ACO running……', 'tag', 'TMWWaitbar');
for gen=1:maxgen% 蚁群1routemat201=zeros(popsize,N1);for i=1:popsizeOpNodeSetLocal=index201;route=randi([1,N1],1,1);%初始化起点currNode=route(end);OpNodeSetLocal(OpNodeSetLocal==currNode)=[];while ~isempty(OpNodeSetLocal)%还没选完就要继续long1=length(OpNodeSetLocal);P=zeros(long1,1);%% 计算转移概率for j=1:long1tempnextnode=OpNodeSetLocal(j);P(j,1)=(Tau201(currNode,tempnextnode)^alpha)*(Eta201(currNode,tempnextnode)^beta);endP = P/sum(P);Pc =cumsum(P);index02 = find(Pc >= rand);next_node = OpNodeSetLocal(index02(1));%选择参数route=[route,next_node];%更新路径currNode=route(end);OpNodeSetLocal(OpNodeSetLocal==currNode)=[];endroutemat201(i,:)=route;end% 蚁群2routemat202=zeros(popsize,N1);for i=1:popsizeroute=randi([1,S0(1)],1,1);%初始化起点currNode=route(end);OpNodeSetLocal= find(E(currNode,:));% 可选集while ~isempty(OpNodeSetLocal)%还没选完就要继续long1=length(OpNodeSetLocal);P201=zeros(long1,1);%% 计算转移概率for j=1:long1tempnextnode=OpNodeSetLocal(j);P201(j,1)=(Tau202(currNode,tempnextnode)^alpha)*(Eta202(currNode,tempnextnode)^beta);endP201=P201/sum(P201);Pc=cumsum(P201);index02= find(Pc >= rand);next_node =OpNodeSetLocal(index02(1));%选择参数route=[route,next_node];%更新路径currNode=route(end);OpNodeSetLocal= find(E(currNode,:));% 可选集endroutemat202(i,:)=route;endchrom=[routemat201,routemat202];Value= decodingfun(chrom,popsize);%调用成本函数计算成本[vmin,indexmin]=min(Value);%% 更新信息素Tau201=updatetau(routemat201,popsize,rho,Q,Tau201,Value);% 更新全局信息素Tau202=updatetau(routemat201,popsize,rho,Q,Tau202,Value);% 更新全局信息素%% 记录最优if gen==1bestroute=chrom(indexmin,:);%记录最优染色体bestvalueaco=vmin;%记录的最优值endif bestvalueaco>vminbestvalueaco=vmin;%记录的最优值bestroute=chrom(indexmin,:);endtracemataco(gen,1)=bestvalueaco;% 保留最优tracemataco(gen,2)=mean(Value);% 均值waitbar(gen/maxgen,wait_hand);%每循环一次更新一次进步条
end
delete(wait_hand);%执行完后删除该进度条% 绘图
figure;
plot(tracemataco(:,1),'r-','linewidth',1);
legend({'蚁群最优值'},'fontname','宋体');
xlabel('迭代次数','fontName','宋体');
ylabel('目标函数','fontName','宋体');
title('蚁群算法优化目标函数曲线','fontName','宋体');disp('显示蚁群算法优化得到的结果');
disp('蚁群算法优化得到最佳目标函数');
bestvalueaco
disp('蚁群算法优化得到最佳路径');
bestroutex=bestroute;
[y,G]=myfun(x);
G
title201='蚁群算法优化得到的甘特图';
drawgattG(G,jobnumber,title201);rmpath(genpath('mytoolbox'));

程序结果:


S20 =

     1     1     1     1     2     2     2     2     3     3     3     3     4     4     4     4     5     5     5     5     6     6     6     6

显示蚁群算法优化得到的结果
蚁群算法优化得到最佳目标函数

bestvalueaco =

    44

蚁群算法优化得到最佳路径

bestroute =

  1 至 28 列

    12    22     7    15    11    18     4    10    13     8     5    19    20    21     9    14     6    23     2    17    16     1     3    24     1     4     8    11

  29 至 48 列

    13    15    17    20    23    25    29    32    34    35    39    41    42    47    49    52    54    58    61    62


G =

     3     1     3     0     3
     6     1     2     0     7
     2     1     4     0     6
     4     1     6     0     7
     3     2     2     7    10
     5     1     3     3     8
     1     1     1     0     3
     3     3     5    10    15
     4     2     1     7    15
     2     2     2    10    18
     2     3     3    18    23
     5     2     6     8    16
     5     3     2    18    23
     6     2     6    16    26
     3     4     5    15    18
     4     3     3    23    25
     2     4     1    23    30
     6     3     6    26    35
     1     2     3    25    35
     5     4     5    23    29
     4     4     5    29    41
     1     3     6    35    40
     1     4     5    41    44
     6     4     4    35    40

>> 

 完整代码见:https://download.csdn.net/download/corn1949/89173025

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/793.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI:162-如何使用Python进行图像识别与处理深度学习与卷积神经网络的应用

本文收录于专栏:精通AI实战千例专栏合集 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正…

OpenHarmony GIF图像渲染库—ohos-gif-drawable

简介 本项目是OpenHarmony系统的一款GIF图像渲染库,基于Canvas进行绘制,主要能力如下: 支持播放GIF图片。支持控制GIF播放/暂停。支持重置GIF播放动画。支持调节GIF播放速率。支持监听GIF所有帧显示完成后的回调。支持设置显示大小。支持7种不同的展示…

面试题:Redis如何防止缓存穿透 + 布隆过滤器原理

题目来源 招银网络-技术-1面 题目描述 缓存穿透是什么?如何防止缓存穿透布隆过滤器的原理是什么? 我的回答 缓存穿透是什么? 攻击者大量请求缓存和数据库中都不存在的key。如何防止缓存穿透 可以使用布隆过滤器布隆过滤器的原理是什么&a…

AI容器化部署开发尝试 (一)(Pycharm连接docker,并部署django测试)

注意:从 Docker 19.03 开始,Docker 引入了对 NVIDIA GPU 的原生支持,因此若AI要调用GPU算力的话docker版本也是有要求的,后面博客测试。 当然本篇博客还没设计到GPU的调用,主要Pycharm加Anaconda的方案用习惯了&#…

缓存的使用及常见问题的解决方案

用户通过浏览器向我们发送请求,这个时候浏览器就会建立一个缓存,主要缓存一些静态资源(js、css、图片),这样做可以降低之后访问的网络延迟。然后我们可以在Tomcat里面添加一些应用缓存,将一些从数据库查询到…

Flask:URL与视图的映射

默认端口号80、443 blog_id 限制数据类型的话(int) 除此之外别的数据类型也可以,或者多个(用any) /book/list?page6

【笔记】ASP.NET Core Web API之Token验证

在实际开发中经常需要对外提供接口以便客户获取数据,由于数据属于私密信息,并不能随意供其他人访问,所以就需要验证客户身份。那么如何才能验证客户的身份呢?一个简单的小例子,简述ASP.NET Core Web API开发过程中&…

Git学习笔记(三)Git分支

Git分支是Git中非常重要的一个概念,无论是个人开发还是多人协作中,分支都起着至关重要的作用。几乎所有的版本控制系统都以某种形式支持分支。 使用分支意味着你可以把你的工作从开发主线上分离 开来进行重大的Bug修改、开发新的功能,以免影响…

Linux驱动开发笔记(零)驱动基础知识及准备

文章目录 前言一、Liunx、MCU和FPGA编程的区别二、Linux内核模块1. 什么是内核模块2. 内核模块的代码架构3. 头文件4. 模块参数5. makefile说明 三、 驱动程序设计思路1. 基本步骤2. 设备号3. 数据结构3.1 file_operations3.2 file3.3 inode3.4 哈希表3.5 cdev结构体3.6 kobj_m…

[Linux][进程信号][一][信号基础][如何产生信号]详细解读

目录 0.前言预备1.系统定义的信号列表2.核心转储 -- Core Dump 1.信号基础1.信号概念2.信号处理方式概览3.理解信号如何被保存4.信号发送的本质 2.如何产生信号?1.终端按键产生信号2.系统调用接口1.kill()2.raise()3.abort()4.如何理解? 3.由软件条件产生…

C# 图像旋转一定角度后,对应坐标怎么计算?

原理分析 要计算图像内坐标在旋转一定角度后的新坐标,可以使用二维空间中的点旋转公式。假设图像的中心点(即旋转中心)为 (Cx, Cy),通常对于正方形图像而言,中心点坐标为 (Width / 2, Height / 2)。给定原坐标点 (X, …

开发与产品的战争之自动播放视频

开发与产品的战争之自动播放视频 起因 产品提了个需求,对于网站上的宣传视频,进入页面就自动播放。但是基于我对chromium内核的一些浅薄了解,我当时就给拒绝了: “浏览器不允许”。(后续我们浏览器默认都是chromium内核的&#…

【深度学习】Vision Transformer

一、Vision Transformer Vision Transformer (ViT)将Transformer应用在了CV领域。在学习它之前,需要了解ResNet、LayerNorm、Multi-Head Self-Attention。 ViT的结构图如下: 如图所示,ViT主要包括Embedding、Encoder、Head三大部分。Class …

OpenHarmony鸿蒙南向开发案例:【智能燃气检测设备】

样例简介 本文档介绍了安全厨房案例中的相关智能燃气检测设备,本安全厨房案例利用轻量级软总线能力,将两块欧智通V200Z-R/BES2600开发板模拟的智能燃气检测设备和燃气告警设备组合成。当燃气数值告警时,无需其它操作,直接通知软总…

VOS3000加装登陆服务器安全防护系统有用吗

VOS3000是一款专业的软交换系统,它主要用于中小规模的VoIP运营业务,包括运营费率设定、套餐管理,账户管理、业终端管理、网关管理、数据查询、卡类管理、号码管理、系统管理等功能1。而关于加装登陆服务器安全防护系统是否有用,这…

2.4 Web容器配置:Tomcat

2.4 Web容器配置 2.4.1Tomcat配置1.常规配置2. HTTPS配置 *********** 2.4.1Tomcat配置 1.常规配置 在SpringBoot项目中,可以内置Tomcat、Jetly、Undertow、Netty等容器。 当开发者添加了spring-boot-starter-web依赖之后,默认会使用Tomcat作为Web容器…

基于Springboot+Vue的Java项目-网上点餐系统开发实战(附演示视频+源码+LW)

大家好!我是程序员一帆,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:Java毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计 &am…

【EdgeBox-8120AI-TX2】Ubuntu18.04 + ROS_ Melodic + 星秒PAVO2单线激光 雷达评测

大家好,我是虎哥,好久不见,最近这断时间出现了一点变故,开始自己创业,很多事需要忙,所以停更了大约大半年,最近一切已经理顺,所以我还是抽空继续我之前的FLAG,CSDN突破十…

牛客NC314 体育课测验(一)【中等 图,BFS,拓扑排序 Java,Go、PHP】

题目 题目链接: https://www.nowcoder.com/practice/1a16c1b2d2674e1fb62ce8439e867f33 核心 图,BFS,拓扑排序,队列参考答案Java import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修…

数据库——实验9 存储过程的使用

1. 存储过程的定义 存储过程是一系列预先编辑好的、能实现特定数据操作功能的SQL 代码集,它与特定的数据库相关联,存储在SQL Server服务器上。用户可以像使用自定义的函数一样重复调用这些存储过程,实现它所定义的操作。 2. 存储过程的类型…