CellMarker | 人骨骼肌组织细胞Marker大全!~(强烈建议火速收藏!)

1写在前面

分享一下最近看到的2paper关于骨骼肌组织的细胞Marker,绝对的Atlas级好东西。👍

希望做单细胞的小伙伴觉得有用哦。😏

2常用marker(一)

general_mrkrs <- c(
'MYH7', 'TNNT1', 'TNNT3', 'MYH1', 'MYH2', "CKM", "MB", # Myofibers
'PAX7', 'DLK1', # MuSCs
'PDGFRA', 'DCN', 'ANGPTL7', 'OSR2', 'NGFR', 'SLC22A3','ITGA6', # Fibroblasts
'FMOD', 'TNMD' , 'MKX', # Tenocytes
'MPZ', 'MBP', # Schwann cells
'CDH2', 'L1CAM', # SCG
'MSLN', 'ITLN1', # mesothelium
"ADIPOQ", "PLIN1", # adipocytes
'PTPRC', 'CD3D', 'IL7R', # T cells
'NKG7', 'PRF1', #NK cells
'CD79A', "TCL1A", # B cells
'MZB1', 'JCHAIN', # B plasma
"CD14", "FCGR3A",'S100A8', 'S100A12', # Mono
"CD163", "C1QA", # Macrop
"XCR1", "CLEC9A", # cDC1 "CADM1",
"CD1C", "CLEC10A", "CCR7", # cDC2
'LILRA4', 'IL3RA', "IRF7", # pDC
'FCGR3B', 'CSF3R', 'SORL1', # Neutrophils
'EPX', 'PRG2', # Eosinophils 'CLC'
'TPSB2', 'MS4A2', # Mast cells
'PECAM1', 'HEY1','CLU', # art EC
'CA4', 'LPL', # capEC
'ACKR1', 'SELE', # venEC
'LYVE1', 'TFF3', # lymphEC
'RGS5','ABCC9', # pericytes
'MYH11', 'ACTA2', # SMC
'HBA1', #RBC
)

出自下面paper:👇

Human skeletal muscle aging atlas. Veronika R. Kedlian, Yaning Wang, Tianliang Liu, Xiaoping Chen, Liam Bolt, Catherine Tudor, Zhuojian Shen, Eirini S. Fasouli, Elena Prigmore, Vitalii Kleshchevnikov, Jan Patrick Pett, Tong Li, John E G Lawrence, Shani Perera, Martin Prete, Ni Huang, Qin Guo, Xinrui Zeng, Lu Yang, Krzysztof Polański, Nana-Jane Chipampe, Monika Dabrowska, Xiaobo Li, Omer Ali Bayraktar, Minal Patel, Natsuhiko Kumasaka, Krishnaa T. Mahbubani, Andy Peng Xiang, Kerstin B. Meyer, Kourosh Saeb-Parsy, Sarah A Teichmann & Hongbo Zhang 2024 Apr.

3常用marker(二)

Mural Cell Markers

#SMOOTH MUSCLE CELLS
FeaturePlot(df.harmony, features = "MYH11", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "ACTA2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "TAGLN", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#PERICYTES
FeaturePlot(df.harmony, features = "RGS5", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CSPG4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PDGFRB", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Glial Cells Markers

FeaturePlot(df.harmony, features = "PROX1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MPZ", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "NCAM1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CDH19", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "SOX10", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PLP1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)


Adipocites Markers

FeaturePlot(df.harmony, features = "PLIN1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "ADIPOQ", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MMRN1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CCL21", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Tenocytes Markers

FeaturePlot(df.harmony, features = "FMOD", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "TNMD", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL22A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "SCX", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "DLG2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "FBN1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Endothelial Markers

#FeaturePlot(df.harmony, features = "PCDHA6", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#ARTERIAL
FeaturePlot(df.harmony, features = "FBLN5", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "DLL4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "SEMA3G", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#CAPILLARIES
FeaturePlot(df.harmony, features = "RGCC", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#VENOUS
FeaturePlot(df.harmony, features = "EPHB4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Myonuclei Markers

FeaturePlot(df.harmony, features = "TTN", min.cutoff = "q9", order = T, cols = c("lightblue", "navy"), raster = FALSE)

#IMMATURE MYOCYTE
FeaturePlot(df.harmony, features = "MYMX", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MYOG", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#REG MYONUCLEI
FeaturePlot(df.harmony, features = "FLNC", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MYH3", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MYH8", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "XIRP1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)


NMJ Myonuclei Markers (Neuromuscular junction)

#NMJ
FeaturePlot(df.harmony, features = "CHRNE", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CHRNA1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PRKAR1A", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL25A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "UTRN", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COLQ", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "ABLIM2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "VAV3", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "UFSP1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

MTJ Myonuclei Markers (Myotendinous junction)

#MTJ
FeaturePlot(df.harmony, features = "COL22A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PIEZO2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL24A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL6A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "FSTL1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL6A3", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "TIGD4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

FeaturePlot(mini_df.harmony.harmony, features = "EYS", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

出自下面paper:👇

Lai, Y., Ramírez-Pardo, I., Isern, J. et al. Multimodal cell atlas of the ageing human skeletal muscle. Nature (2024).


alt
最后祝大家早日不卷!~

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

📍 往期精彩

📍 🤩 LASSO | 不来看看怎么美化你的LASSO结果吗!?
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

alt

alt

alt

alt

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/7125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ComfyUI 基础教程(十三):ComfyUI-Impact-Pack 面部修复

SD的WebUI 中的面部修复神器 ADetailer,无法在ComfyUI 中使用。那么如何在ComfyUI中进行面部处理呢?ComfyUI 中也有几个面部修复功能,比如ComfyUI Impact Pack(FaceDetailer),以及换脸插件Reactor和IPAdapter。 ComfyUI-Impact-Pack 是一个功能强大的插件,专为 ComfyUI …

淘宝扭蛋机小程序开发:开启你的惊喜之旅

一、扭出新世界&#xff0c;惊喜不断 在这个充满无限可能的数字时代&#xff0c;淘宝扭蛋机小程序为你带来了一种全新的购物与娱乐体验。扭蛋机&#xff0c;这个充满童趣和惊喜的玩具&#xff0c;如今在我们的小程序中焕发出新的活力&#xff0c;为你带来一波又一波的惊喜与快…

【CTF Web】XCTF GFSJ0485 simple_php Writeup(代码审计+GET请求+PHP弱类型漏洞)

simple_php 小宁听说php是最好的语言,于是她简单学习之后写了几行php代码。 解法 &#xfeff;<?php show_source(__FILE__); include("config.php"); $a$_GET[a]; $b$_GET[b]; if($a0 and $a){echo $flag1; } if(is_numeric($b)){exit(); } if($b>1234){ech…

jquery项目 html使用export import方式调用模块

jquery的老项目&#xff0c;引入vue3, 需要方便使用export, import方式引用一些常用的方法与常量 导出模块 export js/numberUtil.js /*** Description:* Author Lani* date 2024/1/10*//* * 【金额】 保留2位小数&#xff0c;不四舍五入 * 5.992550 >5.99 , 2 > 2.…

【Kaggle】练习赛《洪水数据集的回归预测》(下)

前言 上篇《洪水数据集的回归预测》(上) 介绍了该数据集非常特殊之处&#xff0c;各特征都非常类似&#xff0c;没有特别之处&#xff0c;各特征之间的相关系数几乎为零。同时&#xff0c;各类模型不敏感&#xff0c;最理想的模型居然是线性回归&#xff0c;决定系数 R 2 R^2 …

64位Office API声明语句第118讲

跟我学VBA&#xff0c;我这里专注VBA, 授人以渔。我98年开始&#xff0c;从源码接触VBA已经20余年了&#xff0c;随着年龄的增长&#xff0c;越来越觉得有必要把这项技能传递给需要这项技术的职场人员。希望职场和数据打交道的朋友&#xff0c;都来学习VBA,利用VBA,起码可以提高…

达梦数据库导入数据问题

进行数据导入的时候遇到了导入数据问题 第一个问题&#xff1a; 该工具不能解析此文件&#xff0c;请使用更高版本的工具 这个是因为版本有点低&#xff0c;需要下载最新的达梦数据库 第二个问题&#xff1a; &#xff08;1&#xff09;本地编码&#xff1a;PG_GBK, 导入文…

全国31省对外开放程度、经济发展水平、ZF干预程度指标数据(2000-2022年)

01、数据介绍 自2000年至2022年&#xff0c;中国的对外开放程度不断深化、经济发展水平不断提高、ZF不断探索并调整自身在经济运行中的角色和定位&#xff0c;以更好地适应国内外环境的变化&#xff0c;也取得了举世瞩目的成就。这一期间&#xff0c;中国积极融入全球经济体系…

[机器学习-02] 数据可视化神器:Matplotlib和Seaborn工具包实战图形大全

目录 引言 正文 01-Matplotlib包的使用示例 1&#xff09;Matplotlib导入方式 2&#xff09;折线图绘制 3&#xff09;散点图绘制 4&#xff09;柱状图绘制 5&#xff09;饼图绘制 6&#xff09;等高线图绘制 7&#xff09;箱线图绘制 8&#xff09;较为复杂…

7zip如何只压缩文件不带上级目录?

在使用7zip进行文件压缩的时候&#xff0c;如果直接选择要压缩的文件进行压缩&#xff0c;得到的压缩包则会多包含一层顶层目录&#xff0c;解压缩之后需要点击两次才能进入到实际目录中&#xff0c;为了解决这个问题&#xff0c;本文根据探索找到了一种解决办法。 如下是一个演…

表空间的概述

目录 表空间的属性 表空间的类型 永久性表空间(PermanentTablespace) 临时表空间(Temp Tablespace ) 撤销表空间(Undo Tablespace) 大文件表空间(BigfileTablespace) 表空间的状态 联机状态(Online) 读写状态(Read Write) 只读状态(Read) 脱机状态(Offline) Oracle从…

Java_从入门到JavaEE_09

一、构造方法/构造器 含义&#xff1a;和new一起是创建对象的功能 特点&#xff1a; 与类名相同的方法没有返回项 注意&#xff1a; 当类中没有写构造方法时&#xff0c;系统会默认添加无参构造&#xff08;无参数的构造方法&#xff09;构造方法可以重载的 有参构造好处&…

透明加密软件选哪个好?选择时一定要注意以下三点

透明加密软件哪个好&#xff1f; 这是许多企事业单位在面临数据防泄漏问题时经常思考的问题。随着信息技术的发展&#xff0c;企业的数据安全变得越来越重要。透明加密技术作为一种有效的数据保护手段&#xff0c;被越来越多的企业所采用。然而&#xff0c;市场上的透明加密软…

Django高级表单处理与验证实战

title: Django高级表单处理与验证实战 date: 2024/5/6 20:47:15 updated: 2024/5/6 20:47:15 categories: 后端开发 tags: Django表单验证逻辑模板渲染安全措施表单测试重定向管理最佳实践 引言&#xff1a; 在Web应用开发中&#xff0c;表单是用户与应用之间进行交互的重要…

OpenHarmony实战开发-请求自绘制内容绘制帧率

对于基于XComponent进行Native开发的业务&#xff0c;可以请求独立的绘制帧率进行内容开发&#xff0c;如游戏、自绘制UI框架对接等场景。 接口说明 开发步骤 说明&#xff1a; 本范例是通过Drawing在Native侧实现图形的绘制&#xff0c;并将其呈现在NativeWindow上 1.定义Ark…

《第一行代码》第二版学习笔记(7)——使用通知和摄像头

文章目录 一、使用通知二、调用摄像头 介绍了通知基于8.0的使用方法和如何调用摄像头拍照 一、使用通知 public void onClick(View v) {if (v.getId() R.id.send_notice){Intent intent new Intent(this,NotificationActivity.class);PendingIntent pi PendingIntent.getAct…

【哈希表】Leetcode 14. 最长公共前缀

题目讲解 14. 最长公共前缀 算法讲解 我们使用当前第一个字符串中的与后面的字符串作比较&#xff0c;如果第一个字符串中的字符没有出现在后面的字符串中&#xff0c;我们就直接返回&#xff1b;反之当容器中的所有字符串都遍历完成&#xff0c;说明所有的字符串都在该位置…

springcloud第4季 springcloud-alibaba之分布式事务seata

一 seata介绍 1.1 seata介绍 1.seata是一款解决分布式事务的解决方案&#xff0c;致力于在微服务架构下提供高性能和简单易用的分布式事务服务。 2.seata的几种术语&#xff1a;一个中心&#xff1a;全局事务id TC(Transaction Coordinator):事务协调者。负责维护全局和分…

通过iMock学习Jvmsandbox

Jvm-sandbox Jvm-sandbox基于Jvm-sandbox的Mock平台iMockiMock的工程学习iMock怎么写的&#xff08;sandbox的module应该怎么写&#xff09; Jvm-sandbox Jvm-sandbox是阿里开源的一款java的沙箱&#xff0c;看网上的介绍在沙箱里你可以做你能想到的奇妙的事情。 基于Jvm-san…

JavaScript百炼成仙自学笔记——16

HTML&#xff1a; 是什么&#xff1f;HyperText Markup Language 既超文本标记语言&#xff08;www的描述语言&#xff09; 既平常上网时所看到的网页 为什么&#xff1f;把存放在一台计算机中的文本或是图形与另一台计算机中的文本或图形方便的联系在一起&#xff0c;形成…