e2studio开发RA2E1.9--定时器GPT配置输入捕获
- 概述
- 视频教学
- 样品申请
- 硬件准备
- 参考程序
- 源码下载
- 新建工程
- 工程模板
- 保存工程路径
- 芯片配置
- 工程模板选择
- 时钟设置
- UART配置
- UART属性配置
- 设置e2studio堆栈
- e2studio的重定向printf设置
- R_SCI_UART_Open()函数原型
- 回调函数user_uart_callback ()
- R_SCI_UART_Write()函数原型
- sprintf()函数
- sprintf函数声明
- printf输出重定向到串口
- printf输出
- 演示
概述
printf 和 sprintf 是 C 语言中常用的输出函数,广泛应用于各种嵌入式、桌面应用程序和调试过程中。这些函数可以将格式化的数据输出到标准输出(如控制台)或存储到字符串中。在系统开发中,了解它们的底层实现不仅能够帮助优化性能,还能提高代码的可移植性和灵活性。
最近在瑞萨RA的课程,需要样片的可以加qun申请:925643491。
视频教学
样品申请
https://www.wjx.top/vm/rCrkUrz.aspx
硬件准备
首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。
主控为R7FA2E1A72DFL#AA0
参考程序
https://github.com/CoreMaker-lab/RA2E1
https://gitee.com/CoreMaker/RA2E1
源码下载
新建工程
工程模板
保存工程路径
芯片配置
本文中使用R7FA2E1A72DFL#AA0来进行演示。
工程模板选择
时钟设置
开发板上的外部高速晶振为12M.
需要修改XTAL为12M。
UART配置
点击Stacks->New Stack->Connectivity -> UART(r_sci_uart)。
UART属性配置
设置e2studio堆栈
printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。
e2studio的重定向printf设置
在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。
R_SCI_UART_Open()函数原型
故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。
/* Open the transfer instance with initial configuration. */err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);assert(FSP_SUCCESS == err);
回调函数user_uart_callback ()
当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。
可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。
fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{if(p_args->event == UART_EVENT_TX_COMPLETE){uart_send_complete_flag = true;}
}
R_SCI_UART_Write()函数原型
故可以用 R_UARTA_Write()函数进行串口数据输出。
unsigned char buff[]="RA E2STUDIO";uint8_t buff_len = strlen(buff);err = R_SCI_UART_Write(&g_uart9_ctrl, buff, buff_len);if(FSP_SUCCESS != err) __BKPT();while(uart_send_complete_flag == false){}uart_send_complete_flag = false;
sprintf()函数
sprintf指的是字符串格式化命令,函数声明为 int sprintf(char *string, char *format [,argument,…]);,主要功能是把格式化的数据写入某个字符串中,即发送格式化输出到 string 所指向的字符串。sprintf 是个变参函数。使用sprintf 对于写入buffer的字符数是没有限制的,这就存在了buffer溢出的可能性。解决这个问题,可以考虑使用 snprintf函数,该函数可对写入字符数做出限制。
sprintf函数声明
int sprintf(char *string, char *format [,argument,…]);
参数列表
● string-- 这是指向一个字符数组的指针,该数组存储了 C 字符串。
● format-- 这是字符串,包含了要被写入到字符串 str 的文本。它可以包含嵌入的 format 标签,format 标签可被随后的附加参数中指定的值替换,并按需求进行格式化。format 标签属性是%[flags][width][.precision][length]specifier
● [argument]…:根据不同的 format 字符串,函数可能需要一系列的附加参数,每个参数包含了一个要被插入的值,替换了 format 参数中指定的每个 % 标签。参数的个数应与 % 标签的个数相同。
功能
● 把格式化的数据写入某个字符串缓冲区。
unsigned char send_buff[100];sprintf(send_buff, "\nHello World!.\n");uint8_t len = strlen(send_buff);err = R_SCI_UART_Write(&g_uart9_ctrl, send_buff, len);if(FSP_SUCCESS != err) __BKPT();while(uart_send_complete_flag == false){}uart_send_complete_flag = false;memset(send_buff, '\0', sizeof(100));
printf输出重定向到串口
打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>
#ifdef __GNUC__ //串口重定向#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endifPUTCHAR_PROTOTYPE
{err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);if(FSP_SUCCESS != err) __BKPT();while(uart_send_complete_flag == false){}uart_send_complete_flag = false;return ch;
}int _write(int fd,char *pBuffer,int size)
{for(int i=0;i<size;i++){__io_putchar(*pBuffer++);}return size;
}
printf输出
int int_i=0;float float_i=66.20f;char char_i[]="hello e2studio";while(1){printf("int_i=%d\n",int_i);printf("float_i=%.2f\n",float_i);printf("char_i='%s'\n",char_i);int_i++;if(int_i>100)int_i=0;R_BSP_SoftwareDelay(1000, BSP_DELAY_UNITS_MILLISECONDS); }