ORB-SLAM2源码学习:KeyFrame.cc④: void KeyFrame::UpdateBestCovisibles更新最佳共视

前言

在添加新连接之后就要重新对所有的共视关键帧和权重的那两个列表重新进行降序排列,这样非常容易知道列表的第一位就是最佳共视关键帧和权重。

总的来说就是只要权重发生了变化就要调用这个函数来修改mvpOrderedConnectedKeyFrames共视关键帧和mvOrderedWeights权重这两个列表。

1.函数声明

void KeyFrame::UpdateBestCovisibles()

2.函数定义

/*按照权重从大到小对连接(共视)的关键帧进行排序更新后的变量存储在mvpOrderedConnectedKeyFrames和mvOrderedWeights中*/
void KeyFrame::UpdateBestCovisibles()
{// 互斥锁,防止同时操作共享数据产生冲突unique_lock<mutex> lock(mMutexConnections);// http://stackoverflow.com/questions/3389648/difference-between-stdliststdpair-and-stdmap-in-c-stl (std::map 和 std::list<std::pair>的区别)vector<pair<int,KeyFrame*> > vPairs;vPairs.reserve(mConnectedKeyFrameWeights.size());// 取出所有连接的关键帧,mConnectedKeyFrameWeights的类型为std::map<KeyFrame*,int>,而vPairs变量将共视的地图点数放在前面,利于排序for(map<KeyFrame*,int>::iterator mit=mConnectedKeyFrameWeights.begin(), mend=mConnectedKeyFrameWeights.end(); mit!=mend; mit++)vPairs.push_back(make_pair(mit->second,mit->first));// 按照权重进行排序(默认是从小到大)sort(vPairs.begin(),vPairs.end());// 为什么要用链表保存?因为插入和删除操作方便,只需要修改上一节点位置,不需要移动其他元素list<KeyFrame*> lKFs;   // 所有连接关键帧list<int> lWs;          // 所有连接关键帧对应的权重(共视地图点数目)for(size_t i=0, iend=vPairs.size(); i<iend;i++){// push_front 后变成从大到小lKFs.push_front(vPairs[i].second);lWs.push_front(vPairs[i].first);}// 权重从大到小排列的连接关键帧mvpOrderedConnectedKeyFrames = vector<KeyFrame*>(lKFs.begin(),lKFs.end());// 从大到小排列的权重,和mvpOrderedConnectedKeyFrames一一对应mvOrderedWeights = vector<int>(lWs.begin(), lWs.end());
}

结束语

以上就是我学习到的内容,如果对您有帮助请多多支持我,如果哪里有问题欢迎大家在评论区积极讨论,我看到会及时回复。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/68050.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

尚硅谷课程【笔记】——大数据之Shell【一】

课程视频&#xff1a;【【尚硅谷】Shell脚本从入门到实战】 一、Shell概述 为什么要学习Shell&#xff1f; 1&#xff09;需要看懂运维人员的Shell程序 2&#xff09;偶尔编写一些简单的Shell程序来管理集群、提高开发效率 什么是Shell&#xff1f; 1&#xff09;Shell是一…

【2025】camunda API接口介绍以及REST接口使用(3)

前言 在前面的两篇文章我们介绍了Camunda的web端和camunda-modeler的使用。这篇文章主要介绍camunda结合springboot进行使用&#xff0c;以及相关api介绍。 该专栏主要为介绍camunda的学习和使用 &#x1f345;【2024】Camunda常用功能基本详细介绍和使用-下&#xff08;1&…

Java进阶学习之路

Java进阶之路 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 Java进阶之路前言一、Java入门 Java基础 1、Java概述 1.1 什…

JAVA安全—反射机制攻击链类对象成员变量方法构造方法

前言 还是JAVA安全&#xff0c;哎&#xff0c;真的讲不完&#xff0c;太多啦。 今天主要是讲一下JAVA中的反射机制&#xff0c;因为反序列化的利用基本都是要用到这个反射机制&#xff0c;还有一些攻击链条的构造&#xff0c;也会用到&#xff0c;所以就讲一下。 什么是反射…

DeepSeek-R1 论文解读:强化学习如何 “炼” 出超强推理模型?

深度解析DeepSeek-R1&#xff1a;强化学习驱动大语言模型推理能力新突破 论文链接&#xff1a;DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 在大语言模型&#xff08;LLMs&#xff09;飞速发展的当下&#xff0c;提升模型推理能力成…

【数据结构】循环链表

循环链表 单链表局限性单向循环链表判断链表是否有环思路code 找到链表入口思路代码结构与逻辑 code 单链表局限性 单链表作为一种基本的数据结构&#xff0c;虽然在很多场景下都非常有用&#xff0c;但它也存在一些局限性&#xff1a; 单向访问&#xff1a;由于每个节点仅包含…

ip属地是手机号还是手机位置?一文理清

在数字化和网络化的今天&#xff0c;IP属地这一概念逐渐成为了人们关注的焦点。特别是在社交媒体和在线平台上&#xff0c;IP属地的显示往往让人联想到用户的地理位置。然而&#xff0c;关于IP属地到底与手机号还是手机位置有关&#xff0c;却存在着不少误解和混淆。本文将深入…

离散时间傅里叶变换(DTFT)公式详解:周期性与连续性剖析

摘要 离散时间傅里叶变换&#xff08;DTFT&#xff09;是数字信号处理领域的重要工具&#xff0c;它能将离散时间信号从时域转换到频域&#xff0c;揭示信号的频率特性。本文将深入解读DTFT公式&#xff0c;详细阐述其具有周期性和连续性的原因&#xff0c;帮助读者全面理解DT…

哈希表与散列表的原理及C++实现

1. 什么是哈希表&#xff1f; 哈希表&#xff08;Hash Table&#xff09;是一种高效的数据结构&#xff0c;用于存储键值对&#xff08;Key-Value Pairs&#xff09;。它通过哈希函数&#xff08;Hash Function&#xff09;将键&#xff08;Key&#xff09;映射到一个固定大小…

图像分类与目标检测算法

在计算机视觉领域&#xff0c;图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解&#xff0c;为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。 一、图像分类算法 图像分类是指将输入的图像划分为…

数字化转型:概念性名词浅谈(第四讲)

​大家好&#xff0c;本篇文章是在新年之际写的&#xff0c;所以在这里先给大家拜个年。 今天要介绍的名词为ETL: ETL&#xff0c;是英文Extract-Transform-Load的缩写&#xff0c;用来描述将数据从来源端经过抽取&#xff08;extract&#xff09;、转换&#xff08;transfor…

UVM factory机制

目录 1. factory-register 1.1 uvm_object_registry#(type T=uvm_object, string Tname="") 1.1 uvm_default_factory::register 2. factory-override 2.1 set_type_override(uvm_object_wrapper override_type) 2.2 set_inst_override(uvm_object_wrapper ove…

奥迪改名风波再起,A6L能否率队创下新奇迹

文/王俣祺 导语&#xff1a;春节假期刚过&#xff0c;奥迪的车型命名规则又变了。在如今以内卷为主基调的环境下&#xff0c;车型改名可不是小事&#xff0c;而奥迪的这次调整背后藏着许多深意&#xff0c;也预示着2025年奥迪在产品布局上的新动向。 改名能否“改命” 回溯到…

改进Transformer,解读Tokenformer论文:基于参数分词化重新思考Transformer的扩展策略

Transformer 训练成本高昂的问题日益凸显&#xff0c;不仅需要耗费巨额的资金与大量的计算资源&#xff0c;还对环境产生了不可忽视的影响&#xff0c;最近由北京大学与谷歌联合发表的一篇论文&#xff0c;为这一棘手难题带来了全新的曙光。论文中提出的创新方案&#xff0c;有…

【STM32】HAL库USB虚拟U盘MSC配置及采用自带的Flash作为文件系统

【STM32】HAL库USB虚拟U盘MSC实现配置及采用自带的Flash作为文件系统 本文将自带的Flash作为文件系统 通过配置USB的MSC功能实现虚拟U盘 没有单独建立FATFS文件系统 仅仅是配置USB和Flash读写而已 当然 这里也可以用外部Flash等等 也可以配置文件系统来进行套壳 但总体而言不如…

Nginx通过设置自定义标记识别代理调用

Nginx通过设置自定义标记识别代理调用 业务场景 最近遇到一个业务场景&#xff0c;部署在云端服务器的一个平台&#xff0c;接口提供给多个现场调用&#xff0c;其中一个现场是通过nginx代理服务器代理转发到云服务器&#xff0c;另外一个现场则是直接通过云服务器接口进行调…

【DeepSeek系列】01 DeepSeek-V1 快速入门

1、DeepSeek简介 2024年底&#xff0c;DeepSeek 相继推出了其第一代推理大模型&#xff1a;DeepSeek-R1-Zero 和 DeepSeek-R1。 DeepSeek-R1-Zero 是一个通过大规模强化学习&#xff08;RL&#xff09;训练的模型&#xff0c;训练过程中没有使用监督微调&#xff08;SFT&…

基于LabVIEW的Modbus-RTU设备通信失败问题分析与解决

在使用 LabVIEW 通过 Modbus-RTU 协议与工业设备进行通信时&#xff0c;可能遇到无法正常发送或接收指令的问题。常见原因包括协议参数配置错误、硬件连接问题、数据帧格式不正确等。本文以某 RGBW 控制器调光失败为例&#xff0c;提出了一种通用的排查思路&#xff0c;帮助开发…

密云生活的初体验

【】在《岁末随笔之碎碎念》里&#xff0c;我通告了自己搬新家的事情。乙巳年开始&#xff0c;我慢慢与大家分享自己买房装修以及在新家的居住体验等情况。 跳过买房装修的内容&#xff0c;今天先说说这三个月的生活体验。 【白河】 潮白河是海河水系五大河之一&#xff0c;贯穿…

Python爬虫:1药城店铺爬虫(完整代码)

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…