直线拟合例子 ,岭回归拟合直线

目录

直线拟合,算出离群点

岭回归拟合直线:


直线拟合,算出离群点

import cv2
import numpy as np# 输入的点
points = np.array([[51, 149],[122, 374],[225, 376],[340, 382],[463, 391],[535, 298],[596, 400],[689, 406],[821, 407]
], dtype=np.float32)# 使用 RANSAC 算法拟合直线,并返回内点和离群点
def fit_line_ransac(points, max_iters=1000, threshold=10):"""使用 RANSAC 算法拟合直线,并判断离群点:param points: 输入的点集,形状为 (N, 2):param max_iters: 最大迭代次数:param threshold: 内点阈值:return: 拟合直线的斜率和截距 (k, b), 内点索引, 离群点索引"""best_k, best_b = 0, 0best_inliers = []max_inliers = 0for _ in range(max_iters):# 随机选择两个点sample_indices = np.random.choice(len(points), 2, replace=False)sample = points[sample_indices]x1, y1 = sample[0]x2, y2 = sample[1]# 计算直线的斜率和截距if x1 == x2:  # 垂直线k = float('inf')b = x1else:k = (y2 - y1) / (x2 - x1)b = y1 - k * x1# 计算所有点到直线的距离distances = np.abs(k * points[:, 0] - points[:, 1] + b) / np.sqrt(k**2 + 1)# 统计内点inliers = np.where(distances < threshold)[0]# 更新最佳模型if len(inliers) > max_inliers:max_inliers = len(inliers)best_k, best_b = k, bbest_inliers = inliers# 离群点 = 所有点 - 内点outliers = np.setdiff1d(np.arange(len(points)), best_inliers)return (best_k, best_b), best_inliers, outliers# 使用 OpenCV 绘制点、拟合直线和内点/离群点
def draw_points_and_line(image, points, inliers, outliers, k, b, color_line=(255, 0, 0), color_inliers=(0, 255, 0), color_outliers=(0, 0, 255)):"""使用 OpenCV 绘制点、拟合直线和内点/离群点:param image: 背景图像:param points: 输入的点集:param inliers: 内点索引:param outliers: 离群点索引:param k: 直线斜率:param b: 直线截距:param color_line: 直线颜色 (BGR):param color_inliers: 内点颜色 (BGR):param color_outliers: 离群点颜色 (BGR)"""# 绘制内点for i in inliers:x, y = points[i]cv2.circle(image, (int(x), int(y)), 5, color_inliers, -1)# 绘制离群点for i in outliers:x, y = points[i]cv2.circle(image, (int(x), int(y)), 5, color_outliers, -1)# 绘制拟合直线x_min, x_max = int(np.min(points[:, 0])), int(np.max(points[:, 0]))y_min = int(k * x_min + b)y_max = int(k * x_max + b)cv2.line(image, (x_min, y_min), (x_max, y_max), color_line, 2)# 创建背景图像
image_width = 1000  # 图像宽度
image_height = 600  # 图像高度
background = np.zeros((image_height, image_width, 3), dtype=np.uint8)  # 黑色背景# 使用 RANSAC 算法拟合直线,并判断离群点
(k, b), inliers, outliers = fit_line_ransac(points)
print(f"RANSAC 拟合直线: y = {k:.2f}x + {b:.2f}")
print(f"内点索引: {inliers}")
print(f"离群点索引: {outliers}")# 绘制点、拟合直线和内点/离群点
draw_points_and_line(background, points, inliers, outliers, k, b)# 显示图像
cv2.imshow("RANSAC Line Fitting with OpenCV", background)
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存图像
cv2.imwrite("ransac_line_fitting_opencv.jpg", background)

岭回归拟合直线:

import cv2
import numpy as np
from sklearn.linear_model import Ridge# 生成带噪声的点
np.random.seed(42)
num_points = 100
x = np.linspace(0, 10, num_points)
y = 2 * x + 1 + np.random.normal(0, 1, num_points)  # y = 2x + 1 + 噪声# 将 x 转换为二维数组(因为 sklearn 需要二维输入)
X = x.reshape(-1, 1)# 使用岭回归拟合直线
ridge = Ridge(alpha=1.0)  # alpha 是正则化强度
ridge.fit(X, y)# 获取拟合的斜率和截距
slope = ridge.coef_[0]
intercept = ridge.intercept_# 打印拟合结果
print(f"拟合直线方程: y = {slope:.2f}x + {intercept:.2f}")# 计算拟合直线的两个端点
x_min, x_max = 0, 10
y_min = slope * x_min + intercept
y_max = slope * x_max + intercept# 将点缩放到图像尺寸
scale = 40  # 缩放因子
image_width = 640
image_height = 480# 创建一个空白图像用于可视化
image = np.zeros((image_height, image_width, 3), dtype=np.uint8)# 绘制点
for xi, yi in zip(x, y):cv2.circle(image, (int(xi * scale), int(yi * scale)), 3, (0, 255, 0), -1)# 绘制拟合的直线
pt1 = (int(x_min * scale), int(y_min * scale))
pt2 = (int(x_max * scale), int(y_max * scale))
cv2.line(image, pt1, pt2, (0, 0, 255), 2)# 显示图像
cv2.imshow("Ridge Regression Line Fit", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/66933.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SVN客户端使用手册

目录 一、简介 二、SVN的安装与卸载 1. 安装&#xff08;公司内部一般会提供安装包和汉化包&#xff0c;直接到公司内部网盘下载即可&#xff0c;如果找不到可以看下面的教程&#xff09; 2. 查看SVN版本 ​编辑 3. SVN卸载 三、SVN的基本操作 1. 检出 2. 清除认证数据 3. 提交…

衡量算法性能的量级标准:算法复杂度

今天开始数据结构的学习&#xff01;作为一大重点&#xff0c;拿出态度很重要&#xff0c;想要真实掌握&#xff0c;博客笔记自然少不了&#xff01;重点全部上色&#xff01;避免疏忽 下面我们从0基础开始学习今天的第一节&#xff01;不用担心看不懂&#xff0c;拒绝枯燥的理…

Spring Boot Starter介绍

前言 大概10来年以前&#xff0c;当时springboot刚刚出现并没有流行&#xff0c;当时的Java开发者们开发Web应用主要是使用spring整合springmvc或者struts、iBatis、hibernate等开发框架来进行开发。项目里一般有许多xml文件配置&#xff0c;其中配置了很多项目中需要用到的Be…

Java面试题2025-Spring

讲师&#xff1a;邓澎波 Spring面试专题 1.Spring应该很熟悉吧&#xff1f;来介绍下你的Spring的理解 1.1 Spring的发展历程 先介绍Spring是怎么来的&#xff0c;发展中有哪些核心的节点&#xff0c;当前的最新版本是什么等 通过上图可以比较清晰的看到Spring的各个时间版本对…

浅谈Redis

2007 年&#xff0c;一位程序员和朋友一起创建了一个网站。为了解决这个网站的负载问题&#xff0c;他自己定制了一个数据库。于2009 年开发&#xff0c;称之为Redis。这位意大利程序员是萨尔瓦托勒桑菲利波(Salvatore Sanfilippo)&#xff0c;他被称为Redis之父&#xff0c;更…

element tbas增加下拉框

使用Tabs 标签页的label插槽&#xff0c;嵌入Dropdown 下拉菜单&#xff0c;实现Tabs 标签页增加下拉切换功能 Tabs 标签页 tab-click"事件"&#xff08;这个事件当中到拥有下拉框的tab里时&#xff0c;可以存一下Dropdown 第一个菜单的id&#xff0c;实现点击到拥有…

SQL-leetcode—1179. 重新格式化部门表

1179. 重新格式化部门表 表 Department&#xff1a; ---------------------- | Column Name | Type | ---------------------- | id | int | | revenue | int | | month | varchar | ---------------------- 在 SQL 中&#xff0c;(id, month) 是表的联合主键。 这个表格有关…

【Address Overfitting】解决过拟合的三种方法

目录 1. 收集更多数据实践方法&#xff1a;适用场景&#xff1a;优缺点&#xff1a; 2. 特征选择方法介绍&#xff1a;实践示例&#xff1a;适用场景&#xff1a;优缺点&#xff1a; 3. 正则化&#xff08;Regularization&#xff09;正则化类型&#xff1a;实践示例&#xff1…

面向通感一体化的非均匀感知信号设计

文章目录 1 非均匀信号设计的背景分析1.1 基于OFDM波形的感知信号1.2 非均匀信号设计的必要性和可行性1.2 非均匀信号设计的必要性和可行性 3 通感一体化系统中的非均匀信号设计方法3.1 非均匀信号的设计流程&#xff08;1&#xff09;均匀感知信号设计&#xff08;2&#xff0…

【深度学习】搭建PyTorch神经网络进行气温预测

第一步 数据加载与观察 ①导包 import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch import torch.optim as optim import warnings warnings.filterwarnings("ignore") %matplotlib inline ②加载数据 features pd.read_csv(…

ESP8266 NodeMCU与WS2812灯带:实现多种花样变换

在现代电子创意项目中&#xff0c;LED灯带的应用已经变得极为广泛。通过结合ESP8266 NodeMCU的强大处理能力和FastLED库的高效功能&#xff0c;我们可以轻松实现多达100种灯带变换效果。本文将详细介绍如何使用Arduino IDE编程&#xff0c;实现从基础到高级的灯光效果&#xff…

pycharm踩坑(1)

由于我重装系统&#xff0c;导致我的pycharm需要进行重装&#xff0c;因此我觉得需要记录一下&#xff0c;pycharm的正确使用方法 汉化 汉化很重要&#xff0c;除非你从小就双语教学&#xff0c;不然你看着那些英文就是会消耗大量的精力 我使用的pycharm版本是pycharm-commun…

OpenCV2D 特征框架 (11)特征检测与描述用于检测二值图像中连通区域(即“斑点”或“blob”)的类cv::SimpleBlobDetector的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::SimpleBlobDetector 是 OpenCV 中用于检测二值图像中连通区域&#xff08;即“斑点”或“blob”&#xff09;的类。这些连通区域可以是白色前…

Unity自学之旅05

Unity自学之旅05 Unity学习之旅⑤&#x1f4dd; AI基础与敌人行为&#x1f94a; AI导航理论知识&#xff08;基础&#xff09;开始实践 &#x1f383; 敌人游戏机制追踪玩家攻击玩家子弹碰撞完善游戏失败条件 &#x1f917; 总结归纳 Unity学习之旅⑤ &#x1f4dd; AI基础与敌…

浅谈Unity中Canvas的三种渲染模式

Overview UGUI通过 Canvas 组件渲染和管理UI元素。Canvas 是 UI 元素的容器&#xff0c;它决定了 UI 元素的渲染方式以及它们在屏幕上的显示效果。Canvas 有三种主要的渲染模式&#xff0c;每种模式有不同的用途和特点。本文将介绍这三种渲染模式 1. Screen Space - Overlay 模…

Unity中在UI上画线

在UI中画一条曲线 我封装了一个组件,可以实现基本的画线需求. 效果 按住鼠标左键随手一画. 用起来也很简单,将组件挂到空物体上就行了,红色的背景是Panel. 你可以将该组件理解为一个Image,只不过形状更灵活一些罢了,所以它要放在下面的层级(不然可能会被挡住). 代码 可以…

2024.1.22 安全周报

政策/标准/指南最新动态 01 工信部印发《关于加强互联网数据中心客户数据安全保护的通知》 原文: https://www.secrss.com/articles/74673 互联网数据中心作为新一代信息基础设施&#xff0c;承载着千行百业的海量客户数据&#xff0c;是关系国民经济命脉的重要战略资源。…

Mac cursor设置jdk、Maven版本

基本配置 – Cursor 使用文档 首先是系统用户级别的设置参数&#xff0c;运行cursor&#xff0c;按下ctrlshiftp&#xff0c;输入Open User Settings(JSON)&#xff0c;在弹出的下拉菜单中选中下面这样的&#xff1a; 在打开的json编辑器中追加下面的内容&#xff1a; {"…

ARM64平台Flutter环境搭建

ARM64平台Flutter环境搭建 Flutter简介问题背景搭建步骤1. 安装ARM64 Android Studio2. 安装Oracle的JDK3. 安装 Dart和 Flutter 开发插件4. 安装 Android SDK5. 安装 Flutter SDK6. 同意 Android 条款7. 运行 Flutter 示例项目8. 修正 aapt2 报错9. 修正 CMake 报错10. 修正 N…

基于海思soc的智能产品开发(视频的后续开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们讨论了camera&#xff0c;也讨论了屏幕驱动&#xff0c;这些都是基础的部分。关键是&#xff0c;我们拿到了这些视频数据之后&#xff0c;…