PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统

基于YOLOv8深度学习的学生课堂行为检测识别系统,其能识别三种学生课堂行为:names: ['举手', '读书', '写字']

具体图片见如下:

第一步:YOLOv8介绍

YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,在还没有开源时就收到了用户的广泛关注。

YOLOv8 算法的核心特性和改动可以归结为如下:

提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求

Backbone:
骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。

属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了

Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free

Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)

Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

第二步:YOLOv8网络结构

第三步:代码展示

# Ultralytics YOLO 🚀, AGPL-3.0 licensefrom pathlib import Pathfrom ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
from ultralytics.utils import ROOT, yaml_loadclass YOLO(Model):"""YOLO (You Only Look Once) object detection model."""def __init__(self, model="yolo11n.pt", task=None, verbose=False):"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""path = Path(model)if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}:  # if YOLOWorld PyTorch modelnew_instance = YOLOWorld(path, verbose=verbose)self.__class__ = type(new_instance)self.__dict__ = new_instance.__dict__else:# Continue with default YOLO initializationsuper().__init__(model=model, task=task, verbose=verbose)@propertydef task_map(self):"""Map head to model, trainer, validator, and predictor classes."""return {"classify": {"model": ClassificationModel,"trainer": yolo.classify.ClassificationTrainer,"validator": yolo.classify.ClassificationValidator,"predictor": yolo.classify.ClassificationPredictor,},"detect": {"model": DetectionModel,"trainer": yolo.detect.DetectionTrainer,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,},"segment": {"model": SegmentationModel,"trainer": yolo.segment.SegmentationTrainer,"validator": yolo.segment.SegmentationValidator,"predictor": yolo.segment.SegmentationPredictor,},"pose": {"model": PoseModel,"trainer": yolo.pose.PoseTrainer,"validator": yolo.pose.PoseValidator,"predictor": yolo.pose.PosePredictor,},"obb": {"model": OBBModel,"trainer": yolo.obb.OBBTrainer,"validator": yolo.obb.OBBValidator,"predictor": yolo.obb.OBBPredictor,},}class YOLOWorld(Model):"""YOLO-World object detection model."""def __init__(self, model="yolov8s-world.pt", verbose=False) -> None:"""Initialize YOLOv8-World model with a pre-trained model file.Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns defaultCOCO class names.Args:model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.verbose (bool): If True, prints additional information during initialization."""super().__init__(model=model, task="detect", verbose=verbose)# Assign default COCO class names when there are no custom namesif not hasattr(self.model, "names"):self.model.names = yaml_load(ROOT / "cfg/datasets/coco8.yaml").get("names")@propertydef task_map(self):"""Map head to model, validator, and predictor classes."""return {"detect": {"model": WorldModel,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,"trainer": yolo.world.WorldTrainer,}}def set_classes(self, classes):"""Set classes.Args:classes (List(str)): A list of categories i.e. ["person"]."""self.model.set_classes(classes)# Remove background if it's givenbackground = " "if background in classes:classes.remove(background)self.model.names = classes# Reset method class names# self.predictor = None  # reset predictor otherwise old names remainif self.predictor:self.predictor.model.names = classes

第四步:统计训练过程的一些指标,相关指标都有

第五步:运行(支持图片、文件夹、摄像头和视频功能)

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/66543.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka学习笔记6 ACL权限 —— 筑梦之路

在Kafka中,ACL(Access Control List)是用来控制谁可以访问Kafka资源(如主题、消费者组等)的权限机制。ACL配置基于Kafka的kafka-acls.sh工具,能够管理对资源的读取、写入等操作权限。 ACL介绍 Kafka的ACL是…

探秘自然地理:从太阳到地球的奇妙之旅与灾害预警

在浩瀚无垠的宇宙中,我们的地球与太阳紧密相连,它们的奥秘和变化,时刻影响着我们的生活。今天,就让我们一同深入探索自然地理的基础知识,揭开太阳与地球的神秘面纱,同时了解那些可能给我们带来巨大影响的自…

领域算法 - 负载均衡算法

负载均衡算法 文章目录 负载均衡算法一:常规负载均衡算法二:Nginx负载均衡算法 一:常规负载均衡算法 二:Nginx负载均衡算法 # 定义负载均衡设备的Ip及设备状态 upstream bakend {ip_hash; server 127.0.0.1:9090 down; server…

Access数据库教案(Excel+VBA+Access数据库SQL Server编程)

文章目录: 一:Access基础知识 1.前言 1.1 基本流程 1.2 基本概念?? 2.使用步骤方法 2.1 表【设计】 2.1.1 表的理论基础 2.1.2 Access建库建表? 2.1.3 表的基本操作 2.2 SQL语句代码【设计】 2.3 窗体【交互】? 2.3.1 多方式创建窗体 2.3.2 窗体常用的控件 …

图片生成Prompt编写技巧

1. 图片情绪(场景氛围) 一张图片一般都会有一个情绪基调,因为作画本质上也是在传达一些情绪,一般都会借助图片的氛围去转达。例如:比如家庭聚会一般是欢乐、喜乐融融。断壁残垣一般是悲凉。还有萧瑟、孤寂等。 2.补充细…

算法题目总结-链表

文章目录 1.环形链表1.答案2.思路 2.两数相加1.答案2.结果 3.反转链表1.答案2.思路 4.反转链表 II1.答案2.思路 5.K 个一组翻转链表1.答案2.思路 6.删除链表的倒数第 N 个结点1.答案2.思路 7.删除排序链表中的重复元素 II1.答案2.思路 8.旋转链表1.答案2.思路 9.LRU 缓存1.答案…

【Unity3D】3D物体摆放、场景优化案例Demo

目录 PlaceManager.cs(放置管理类) Ground.cs(地板类) 和 GroundData.cs(地板数据类) 额外知识点说明 1、MeshFilter和MeshRenderer的Bounds区别 2、Gizmos 绘制一个平行于斜面的立方体 通过网盘分享的文件:PlaceGameDemo2.unitypackage 链接: https://pan.baid…

OpenEuler学习感悟

在初次接触 OpenEuler 时,我深感其学习难度较大。它与我之前熟悉的操作系统存在诸多差异,学习过程中,需要理解复杂的内核机制、掌握独特的系统配置方法。但正是这种挑战,激发了我深入探索的热情。 从理论学习入手,我发…

C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况

目录 说明 效果 模型 项目 代码 下载 参考 C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况 说明 地址:https://github.com/RapidAI/RapidUnDistort 修正文档扭曲/模糊/阴影等情况,使用onnx模型简单轻量部署&#xff0c…

CSS 溢出问题及解决方案:实用案例与技巧

在网页开发中,CSS 的布局和样式起着至关重要的作用,但经常会遇到一个棘手的问题——溢出问题。溢出是指元素内的内容超出了其设定的容器大小,这不仅会影响页面的美观,还可能干扰用户体验。本文将详细探讨 CSS 溢出问题的案例&…

生成树机制实验

1 实验内容 1、基于已有代码,实现生成树运行机制,对于给定拓扑(four_node_ring.py),计算输出相应状态下的生成树拓扑 2、构造一个不少于7个节点,冗余链路不少于2条的拓扑,节点和端口的命名规则可参考four_node_ring.py,使用stp程序计算输出生成树拓扑 2 实验原理 一、…

数据结构详解——堆与二叉树

​ 目录 树的概念树的表示方法二叉树的概念特殊的二叉树二叉树的性质二叉树的存储结构顺序存储链式存储 堆的概念与结构堆的性质堆的实现堆的初始化入堆堆的扩容向上调整算法出堆(最顶端元素)向下调整算法 二叉树的实现二叉树的创建二叉树的销毁二叉树的…

【蓝桥杯】43694.正则问题

题目描述 考虑一种简单的正则表达式: 只由 x ( ) | 组成的正则表达式。 小明想求出这个正则表达式能接受的最长字符串的长度。 例如 ((xx|xxx)x|(x|xx))xx 能接受的最长字符串是: xxxxxx,长度是 6。 输入描述 一个由 x()| 组成的正则表达式。…

mac m1下载maven安装并配置环境变量

下载地址:Download Apache Maven – Maven 解压到一个没有中文和空格的文件夹 输入pwd查看安装路径 输入cd返回根目录再输入 code .zshrc 若显示 command not found: code你可以通过以下步骤来安装和配置 code 命令: 1. 确保你已经安装了 Visual Studio…

【自己动手开发Webpack插件:开启前端构建工具的个性化定制之旅】

在前端开发的世界里,Webpack无疑是构建工具中的“明星”。它强大的功能可以帮助我们高效地打包和管理前端资源。然而,有时候默认的Webpack功能可能无法完全满足我们的特定需求,这时候就需要自定义Webpack插件来大展身手啦!今天&am…

移远通信多模卫星通信模组BG95-S5获得Skylo网络认证,进一步拓展全球卫星物联网市场

近日,全球领先的物联网整体解决方案供应商移远通信正式宣布,其支持“卫星蜂窝”多模式的高集成度NTN卫星通信模组BG95-S5已成功获得NTN网络运营商Skylo的网络认证。BG95-S5也成为了获得该认证的最新款移远卫星通信模组。 BG95-S5模组顺利获得Skylo认证&a…

1.3.浅层神经网络

目录 1.3.浅层神经网络 1.3.1 浅层神经网络表示 1.3.2 单个样本的向量化表示 1.3.4 激活函数的选择 1.3.5 修改激活函数 1.3.5 练习​​​​​​​ 1.3.浅层神经网络 1.3.1 浅层神经网络表示 之前已经说过神经网络的结构了,在这不重复叙述。假设我们有如下…

StarRocks强大的实时数据分析

代码仓库:https://github.com/StarRocks/starrocks?tabreadme-ov-file StarRocks | A High-Performance Analytical Database 快速开始:StarRocks | StarRocks StarRocks 是一款高性能分析型数据仓库,使用向量化、MPP 架构、CBO、智能物化…

2024年博客之星主题创作|猫头虎分享AI技术洞察:2025年AI发展趋势前瞻与展望

2025年AI发展趋势前瞻:猫头虎深度解析未来科技与商业机遇 摘要 2024年,AI技术迎来爆发式增长,AIGC、智能体、AIRPA、AI搜索、推理模型等技术不断突破,AI应用场景持续扩展。2025年,AI将进入全新发展阶段,W…

PG vs MySQL mvcc机制实现的异同

MVCC实现方法比较 MySQL 写新数据时,把旧数据写入回滚段中,其他人读数据时,从回滚段中把旧的数据读出来 PostgreSQL 写新数据时,旧数据不删除,直接插入新数据。 MVCC实现的原理 PG的MVCC实现原理 定义多版本的数据…