【机器学习实战入门项目】使用Python创建自己的表情符号

在这里插入图片描述

深度学习项目入门——让你更接近数据科学的梦想

表情符号或头像是表示非语言暗示的方式。这些暗示已成为在线聊天、产品评论、品牌情感等的重要组成部分。这也促使数据科学领域越来越多的研究致力于表情驱动的故事讲述。

随着计算机视觉和深度学习的进步,现在可以从图像中检测人类情感。在这个深度学习项目中,我们将对人类面部表情进行分类,并过滤和映射相应的表情符号或头像。

关于数据集

面部表情识别数据集(FER2013)包含48*48像素的灰度人脸图像。这些图像中心对齐,并且占据相同的空间。该数据集包含以下类别的面部情绪:

  • 0: 愤怒
  • 1: 厌恶
  • 2: 恐惧
  • 3: 快乐
  • 4: 悲伤
  • 5: 惊讶
  • 6: 自然

下载数据集: 面部表情识别数据集

下载项目代码: 表情生成器项目源代码

使用深度学习创建你的表情

我们将构建一个深度学习模型来分类图像中的面部表情,然后将分类的情绪映射到表情符号或头像。

使用CNN进行面部情绪识别

在以下步骤中,我们将构建一个卷积神经网络架构,并在FER2013数据集上训练模型,以从图像中识别情绪。

  1. 导入库:

    import numpy as np
    import cv2
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Flatten
    from keras.layers import Conv2D
    from keras.optimizers import Adam
    from keras.layers import MaxPooling2D
    from keras.preprocessing.image import ImageDataGenerator
    
  2. 初始化训练和验证生成器:

    train_dir = 'data/train'
    val_dir = 'data/test'
    train_datagen = ImageDataGenerator(rescale=1./255)
    val_datagen = ImageDataGenerator(rescale=1./255)
    train_generator = train_datagen.flow_from_directory(train_dir,target_size=(48,48),batch_size=64,color_mode="grayscale",class_mode='categorical')
    validation_generator = val_datagen.flow_from_directory(val_dir,target_size=(48,48),batch_size=64,color_mode="grayscale",class_mode='categorical')
    
  3. 构建卷积网络架构:

    emotion_model = Sequential()
    emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
    emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
    emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
    emotion_model.add(Dropout(0.25))
    emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
    emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
    emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
    emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
    emotion_model.add(Dropout(0.25))
    emotion_model.add(Flatten())
    emotion_model.add(Dense(1024, activation='relu'))
    emotion_model.add(Dropout(0.5))
    emotion_model.add(Dense(7, activation='softmax'))
    
  4. 编译和训练模型:

    emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001, decay=1e-6), metrics=['accuracy'])
    emotion_model_info = emotion_model.fit_generator(train_generator,steps_per_epoch=28709 // 64,epochs=50,validation_data=validation_generator,validation_steps=7178 // 64)
    
  5. 保存模型权重:

    emotion_model.save_weights('model.h5')
    
  6. 使用OpenCV的haarcascade xml检测网络摄像头中人脸的边界框,并预测情绪:

    cv2.ocl.setUseOpenCL(False)
    emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}
    cap = cv2.VideoCapture(0)
    while True:ret, frame = cap.read()if not ret:breakbounding_box = cv2.CascadeClassifier('/home/shivam/.local/lib/python3.6/site-packages/cv2/data/haarcascade_frontalface_default.xml')gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)num_faces = bounding_box.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)for (x, y, w, h) in num_faces:cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (255, 0, 0), 2)roi_gray_frame = gray_frame[y:y + h, x:x + w]cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0)emotion_prediction = emotion_model.predict(cropped_img)maxindex = int(np.argmax(emotion_prediction))cv2.putText(frame, emotion_dict[maxindex], (x+20, y-60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)cv2.imshow('Video', cv2.resize(frame, (1200,860), interpolation=cv2.INTER_CUBIC))if cv2.waitKey(1) & 0xFF == ord('q'):break
    cap.release()
    cv2.destroyAllWindows()
    

GUI和表情符号映射的代码

创建一个名为emojis的文件夹,并保存数据集中每种情绪对应的表情符号。

将以下代码粘贴到gui.py中并运行文件。

import tkinter as tk
from tkinter import *
import cv2
from PIL import Image, ImageTk
import os
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D
from keras.optimizers import Adam
from keras.layers import MaxPooling2Demotion_model = Sequential()
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))
emotion_model.load_weights('model.h5')cv2.ocl.setUseOpenCL(False)
emotion_dict = {0: "   Angry   ", 1: "Disgusted", 2: "  Fearful  ", 3: "   Happy   ", 4: "  Neutral  ", 5: "    Sad    ", 6: "Surprised"}
emoji_dist={0:"./emojis/angry.png", 1:"./emojis/disgusted.png", 2:"./emojis/fearful.png", 3:"./emojis/happy.png", 4:"./emojis/neutral.png", 5:"./emojis/sad.png", 6:"./emojis/surprised.png"}global last_frame1
last_frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
global cap1
show_text=[0]def show_vid():cap1 = cv2.VideoCapture(0)if not cap1.isOpened():print("cant open the camera1")flag1, frame1 = cap1.read()frame1 = cv2.resize(frame1, (600,500))bounding_box = cv2.CascadeClassifier('/home/shivam/.local/lib/python3.6/site-packages/cv2/data/haarcascade_frontalface_default.xml')gray_frame = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)num_faces = bounding_box.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)for (x, y, w, h) in num_faces:cv2.rectangle(frame1, (x, y-50), (x+w, y+h+10), (255, 0, 0), 2)roi_gray_frame = gray_frame[y:y + h, x:x + w]cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0)prediction = emotion_model.predict(cropped_img)maxindex = int(np.argmax(prediction))cv2.putText(frame1, emotion_dict[maxindex], (x+20, y-60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)show_text[0]=maxindexif flag1 is None:print("Major error!")elif flag1:global last_frame1last_frame1 = frame1.copy()pic = cv2.cvtColor(last_frame1, cv2.COLOR_BGR2RGB)img = Image.fromarray(pic)imgtk = ImageTk.PhotoImage(image=img)lmain.imgtk = imgtklmain.configure(image=imgtk)lmain.after(10, show_vid)if cv2.waitKey(1) & 0xFF == ord('q'):exit()def show_vid2():frame2 = cv2.imread(emoji_dist[show_text[0]])pic2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB)img2 = Image.fromarray(pic2)imgtk2 = ImageTk.PhotoImage(image=img2)lmain2.imgtk2 = imgtk2lmain3.configure(text=emotion_dict[show_text[0]], font=('arial',45,'bold'))lmain2.configure(image=imgtk2)lmain2.after(10, show_vid2)if __name__ == '__main__':root = tk.Tk()img = ImageTk.PhotoImage(Image.open("logo.png"))heading = Label(root, image=img, bg='black')heading.pack()heading2 = Label(root, text="Photo to Emoji", pady=20, font=('arial',45,'bold'), bg='black', fg='#CDCDCD')heading2.pack()lmain = tk.Label(master=root, padx=50, bd=10)lmain2 = tk.Label(master=root, bd=10)lmain3 = tk.Label(master=root, bd=10, fg="#CDCDCD", bg='black')lmain.pack(side=LEFT)lmain.place(x=50,y=250)lmain3.pack()lmain3.place(x=960,y=250)lmain2.pack(side=RIGHT)lmain2.place(x=900,y=350)root.title("Photo To Emoji")root.geometry("1400x900+100+10")root['bg']='black'exitbutton = Button(root, text='Quit', fg="red", command=root.destroy, font=('arial',25,'bold')).pack(side = BOTTOM)show_vid()show_vid2()root.mainloop()

总结

在这个面向初学者的深度学习项目中,我们构建了一个卷积神经网络来识别面部情绪。我们在FER2013数据集上训练了我们的模型,然后将这些情绪映射到相应的情绪符号或头像。

使用OpenCV的haar cascade xml,我们获得了网络摄像头中人脸的边界框,然后将这些框输入到训练好的模型中进行分类。

DataFlair致力于为用户提供成为数据科学家所需的所有资源,包括详细的教程、实践、用例以及项目源代码。


参考资料

参考资料名称链接
FER2013数据集Kaggle FER2013 Dataset
Keras官方文档Keras Official Documentation
OpenCV官方文档OpenCV Official Documentation
TensorFlow官方文档TensorFlow Official Documentation
数据科学教程DataFlair Data Science Tutorials
深度学习项目DataFlair Deep Learning Projects
图像分类教程Image Classification Tutorial
CNN架构详解CNN Architecture Explained
数据增强技术Data Augmentation Techniques
GUI编程指南GUI Programming Guide
表情符号使用指南Emoji Usage Guide
情感分析研究Emotion Recognition Research
深度学习框架比较Deep Learning Framework Comparison
计算机视觉应用Computer Vision Applications

请注意,这些链接可能会随着时间的推移而更改,建议访问时检查其可用性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/66255.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BEVFusion论文阅读

1. 简介 融合激光雷达和相机的信息已经变成了3D目标检测的一个标准,当前的方法依赖于激光雷达传感器的点云作为查询,以利用图像空间的特征。然而,人们发现,这种基本假设使得当前的融合框架无法在发生 LiDAR 故障时做出任何预测&a…

OSI七层协议——分层网络协议

OSI七层协议,顾名思义,分为七层,实际上七层是不存在的,是人为的进行划分,让人更好的理解 七层协议包括,物理层(我),数据链路层(据),网络层(网),传输层(传输),会话层(会),表示层(表),应用层(用)(记忆口诀->我会用表…

【Mysql进阶知识】Mysql 程序的介绍、选项在命令行配置文件的使用、选项在配置文件中的语法

目录 一、程序介绍 二、mysqld--mysql服务器介绍 三、mysql - MySQL 命令行客户端 3.1 客户端介绍 3.2 mysql 客户端选项 指定选项的方式 mysql 客户端命令常用选项 在命令行中使用选项 选项(配置)文件 使用方法 选项文件位置及加载顺序 选项文件语法 使用举例&am…

wireshark抓路由器上的包 抓包路由器数据

文字目录 抓包流程概述设置抓包配置选项 设置信道设置无线数据包加密信息设置MAC地址过滤器 抓取联网过程 抓包流程概述 使用Omnipeek软件分析网络数据包的流程大概可以分为以下几个步骤: 扫描路由器信息,确定抓包信道;设置连接路由器的…

【蓝桥杯】43687.赢球票

题目描述 某机构举办球票大奖赛。获奖选手有机会赢得若干张球票。 主持人拿出 N 张卡片(上面写着 1⋯N 的数字),打乱顺序,排成一个圆圈。 你可以从任意一张卡片开始顺时针数数: 1,2,3 ⋯ ⋯ 如果数到的数字刚好和卡片上的数字…

微软开源AI Agent AutoGen 详解

AutoGen是微软发布的一个用于构建AI Agent系统的开源框架,旨在简化事件驱动、分布式、可扩展和弹性Agent应用程序的创建过程。 开源地址: GitHub - microsoft/autogen: A programming framework for agentic AI 🤖 PyPi: autogen-agentchat Discord: https://aka.ms/auto…

【Elasticsearch】全文搜索与相关性排序

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…

用css和html制作太极图

目录 css相关参数介绍 边距 边框 伪元素选择器 太极图案例实现、 代码 效果 css相关参数介绍 边距 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>*{margin: 0;padding: 0;}div{width: …

【React】插槽渲染机制

目录 通过 children 属性结合条件渲染通过 children 和 slot 属性实现具名插槽通过 props 实现具名插槽 在 React 中&#xff0c;并没有直接类似于 Vue 中的“插槽”机制&#xff08;slot&#xff09;。但是&#xff0c;React 可以通过 props和 children 来实现类似插槽的功能…

【Go】Go Gorm 详解

1. 概念 Gorm 官网&#xff1a;https://gorm.io/zh_CN/docs/ Gorm&#xff1a;The fantastic ORM library for Golang aims to be developer friendly&#xff0c;这是官网的介绍&#xff0c;简单来说 Gorm 就是一款高性能的 Golang ORM 库&#xff0c;便于开发人员提高效率 那…

【MySQL实战】mysql_exporter+Prometheus+Grafana

要在Prometheus和Grafana中监控MySQL数据库&#xff0c;如下图&#xff1a; 可以使用mysql_exporter。 以下是一些步骤来设置和配置这个监控环境&#xff1a; 1. 安装和配置Prometheus&#xff1a; - 下载和安装Prometheus。 - 在prometheus.yml中配置MySQL通过添加以下内…

【Apache Doris】周FAQ集锦:第 29 期

引言 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和开发者分享有关 Apache Doris 的常见问题。 通过这个每周 FAQ 栏目&#xff0c;希望帮助社…

Linux:文件描述符fd、系统调用open

目录 一、文件基础认识 二、C语言操作文件的接口 1.> 和 >> 2.理解“当前路径” 三、相关系统调用 1.open 2.文件描述符 3.一切皆文件 4.再次理解重定向 一、文件基础认识 文件 内容 属性。换句话说&#xff0c;如果在电脑上新建了一个空白文档&#xff0…

鸿蒙动态路由实现方案

背景 随着CSDN 鸿蒙APP 业务功能的增加&#xff0c;以及为了与iOS、Android 端统一页面跳转路由&#xff0c;以及动态下发路由链接&#xff0c;路由重定向等功能。鸿蒙动态路由方案的实现迫在眉睫。 实现方案 鸿蒙版本动态路由的实现原理&#xff0c;类似于 iOS与Android的实…

计算机网络 (42)远程终端协议TELNET

前言 Telnet&#xff08;Telecommunication Network Protocol&#xff09;是一种网络协议&#xff0c;属于TCP/IP协议族&#xff0c;主要用于提供远程登录服务。 一、概述 Telnet协议是一种远程终端协议&#xff0c;它允许用户通过终端仿真器连接到远程主机&#xff0c;并在远程…

汽车网络信息安全-ISO/SAE 21434解析(上)

目录 概述 第四章-概述 1. 研究对象和范围 2. 风险管理 第五章-组织级网络安全管理 1. 网络安全治理&#xff08;cybersecurity governance&#xff09; 2. 网络安全文化&#xff08;cybersecurity culture) 3. 信息共享&#xff08;Information Sharing) 4. 管理体系…

cursor+deepseek构建自己的AI编程助手

文章目录 准备工作在Cursor中添加deepseek 准备工作 下载安装Cursor &#xff08;默认安装在C盘&#xff09; 注册deepseek获取API key 在Cursor中添加deepseek 1、打开cursor&#xff0c;选择设置 选择Model&#xff0c;添加deepseek-chat 注意这里去掉其他的勾选项&…

微调神经机器翻译模型全流程

MBART: Multilingual Denoising Pre-training for Neural Machine Translation 模型下载 mBART 是一个基于序列到序列的去噪自编码器&#xff0c;使用 BART 目标在多种语言的大规模单语语料库上进行预训练。mBART 是首批通过去噪完整文本在多种语言上预训练序列到序列模型的方…

STM32网络通讯之CubeMX实现LWIP项目设计(十五)

STM32F407 系列文章 - ETH-LWIP-CubeMX&#xff08;十五&#xff09; 目录 前言 一、软件设计 二、CubeMX实现 1.配置前准备 2.CubeMX配置 1.ETH模块配置 2.时钟模块配置 3.中断模块配置 4.RCC及SYS配置 5.LWIP模块配置 3.生成代码 1.main文件 2.用户层源文件 3.…

【Unity-Game4Automation PRO 插件】

Game4Automation PRO 插件 是一个用于 Unity 引擎 的工业自动化仿真工具&#xff0c;它提供了对工业自动化领域的仿真和虚拟调试支持&#xff0c;特别是在与工业机器人、生产线、PLC 系统的集成方面。该插件旨在将工业自动化的实时仿真与游戏开发的高质量 3D 可视化能力结合起来…