BEVFusion论文阅读

1. 简介

融合激光雷达和相机的信息已经变成了3D目标检测的一个标准,当前的方法依赖于激光雷达传感器的点云作为查询,以利用图像空间的特征。然而,人们发现,这种基本假设使得当前的融合框架无法在发生 LiDAR 故障时做出任何预测,无论是轻微还是严重。这从根本上限制了实际场景下的部署能力。相比之下,在BEVFusion框架中,其相机流不依赖于 LiDAR 数据的输入,从而解决了以前方法的缺点。

有两个版本的BEVFusion,分别是北大与阿里合作的Bevfusion: A Simple and Robust LiDAR-Camera和麻省理工发表的Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation,下面分别进行介绍。

2. PKU BEVFusion

作者认为,LiDAR和相机融合的理想框架应该是,无论彼此是否存在,单个模态的每个模型都不应该失败,但同时拥有两种模态将进一步提高感知准确性。为此,作者提出了一个令人惊讶的简单而有效的框架,它解决了当前方法的LiDAR相机融合的依赖性,称为BEVFusion。具体来说,如图1 (c)所示,作者的框架有两个独立的流,它们将来自相机和LiDAR传感器的原始输入编码为同一BEV空间内的特征。然后作者设计了一个简单的模块,在这两个流之后融合这些BEV的特征,以便最终的特征可以传递到下游任务架构中。由于作者的框架是一种通用方法,作者可以将当前用于相机和LiDAR的单模态BEV模型合并到作者的框架中。作者采用Lift-Splat-Shoot作为相机流,它将多视图图像特征投影到3D车身坐标特征以生成相机BEV特征。同样,对于LiDAR流,作者选择了三个流行的模型,两个基于超体素(voxel)的模型和一个基于柱子(pillar)的模型将LiDAR特征编码到BEV空间中。

图1 框架对比。以前的融合方法可以大致分为 (a) 点级point-level融合机制,将图像特征投影到原始点云上,即找到点云和图像特征对应的部分,融合信息,以及 (b) 特征级融合机制,分别在每个视图图像上投影LiDAR特征或proposal以提取RGB信息。(c) 相比之下,作者提出一个新框架,相机和lidar的输入分开
图2 BEVFusion框架。两个流分别提取特征并将它们转换到相同的BEV空间:i)将相机视图特征投影到3D车身坐标以生成相机BEV特征;ii) 3D backbone从点云中提取LiDAR BEV特征。然后融合两种模态的BEV特征。最后,基于融合的BEV特征构建特定任务的头部,并预测3D目标。其中蓝框是预测,红圈是错误预测

3. MIT BEVFusion

3.1. 统一表示

不同的视图中可以存在不同的特征。例如,相机特征在透视视图中,而激光雷达/雷达特征通常在3D/鸟瞰视图中。即使是相机功能,每个功能都有不同的视角(即前、后、左、右)。这个视图差异使得特征融合变得困难,因为不同特征张量中的相同元素可能对应完全不同的空间位置(在这种情况下,naive elementwise特征融合将不起作用)。因此,找到一个共享的表示是至关重要的,这样(1)所有传感器特征都可以很容易地转换为它而不丢失信息,(2)它适合于不同类型的任务。

相机。在RGB-D数据的激励下,一种选择是将LiDAR点云投影到相机平面上,并渲染2.5D稀疏深度。然而,这种转换在几何上是有损的。深度图上的两个邻居在3D空间中可以彼此远离。这使得相机视图对于专注于物体/场景几何的任务(如3D物体检测)的效果较差。

激光雷达。大多数最先进的传感器融合方法用相应的摄像机特征(例如语义标签、CNN特征或虚拟点)装饰LiDAR点。然而,这种摄像头到激光雷达的投影在语义上是有损耗的。相机和激光雷达功能的密度有很大的不同,导致只有不到5%的相机功能与激光雷达点匹配(对于32通道激光雷达扫描仪)。放弃相机特征的语义密度严重损害了模型在面向语义任务(如BEV地图分割)上的性能。类似的缺点也适用于潜在空间中的最新融合方法(例如,对象查询)。

鸟瞰图。采用鸟瞰图(BEV)作为融合的统一表示。这个视图对几乎所有的感知任务都是友好的,因为输出空间也是在BEV中。更重要的是,向BEV的转换同时保持几何结构(来自激光雷达特征)和语义密度(来自相机特征)。一方面,LiDAR- bev投影将稀疏的LiDAR特征沿高度维度平坦化,从而不会在图1a中产生几何失真。另一方面,相机到BEV投影将每个相机特征像素投射回3D空间中的射线(下一节将详细介绍),这可能导致图1c中密集的BEV特征映射,其中保留了来自相机的完整语义信息。

3.2. 高效的摄像头到BEV的转换

摄像头到BEV的转换不是简单的,因为与每个摄像头特征像素相关的深度本质上是模糊的。根据LSS和BEVDet,他们明确地预测了每个像素的离散深度分布。然后,他们将每个特征像素沿摄像机射线分散到D个离散点,并根据相应的深度概率重新缩放相关特征(图3a)。这将生成一个大小为N HW D的相机特征点云,其中N是相机的数量,(H, W)是相机特征映射的大小。该三维特征点云沿x、y轴进行量化,步长为r(例如0.4m)。他们使用BEV池化操作来聚集每个r × r BEV网格中的所有特征,并沿z轴将特征平坦化。

虽然简单,但BEV池化的效率和速度惊人地低,在RTX 3090 GPU上需要超过500毫秒(而他们模型的其余部分只需要大约100毫秒)。这是因为摄像特征点云非常大:对于典型的工作负载,每帧可能生成大约200万个点,比激光雷达特征点云的密度大两个数量级。为了克服这一效率瓶颈,他们提出了通过预计算和间隔缩短来优化BEV池。

预先计算。BEV池化的第一步是将摄像机特征点云中的每个点与BEV网格关联。与LiDAR点云不同,相机特征点云的坐标是固定的(只要相机的intrinsic和extrinsics保持不变,这通常是在适当校准后的情况下)。在此基础上,他们预先计算每个点的3D坐标和BEV网格索引。他们还根据网格索引对所有点进行排序,并记录每个点的排名。在推理过程中,他们只需要根据预先计算的秩对所有特征点进行重新排序。这种缓存机制可以将网格关联的延迟从17ms减少到4ms。

间隔的减少。网格关联后,同一BEV网格内的所有点在张量表示中都是连续的。BEV池化的下一步是通过一些对称函数(例如,均值、最大值和和)聚合每个BEV网格中的特征。如图3b所示,现有实现首先计算所有点的前缀和,然后减去索引变化边界处的值。然而,前缀和操作需要GPU上的树约简,并产生许多未使用的部分和(因为他们只需要边界上的那些值),这两者都是低效的。为了加速特征聚合,他们实现了一个专门的GPU内核,它直接在BEV网格上并行:他们为每个网格分配一个GPU线程,计算它的间隔和并将结果写回来。该内核消除了输出之间的依赖关系(因此不需要多级树约化),并避免将部分和写入DRAM,将特征聚合的延迟从500ms减少到2ms(图3c)。

其他。通过优化的BEV池化,相机到BEV的转换速度提高了40倍:延迟从超过500ms减少到12ms(仅占他们模型端到端运行时间的10%),并且在不同的特征分辨率上都能很好地伸缩(图3d)。这是在共享BEV表示中统一多模态感官特征的关键使能器。我们同时进行的两项工作也确定了仅在相机的3D检测中的效率瓶颈。他们通过假设均匀的深度分布或截断每个BEV网格中的点来近似视图转换器。相比之下,他们的技术是精确的,没有任何近似,同时仍然更快。

3.3. 全卷积融合

将所有的感官特征转换为共享的BEV表示,他们可以很容易地用一个元素操作符(如拼接)将它们融合在一起。尽管在同一空间中,由于视图转换器的深度不准确,LiDAR BEV特征和相机BEV特征仍然会在一定程度上出现空间错位。为此,他们应用了一个基于卷积的BEV编码器(带有一些剩余块)来补偿这种局部失调。他们的方法可能从更精确的深度估计中受益(例如,用地面真实深度监视视图转换器),他们将其留给未来的工作。

3.4. 多任务头

他们将多个特定于任务的头应用到融合BEV特征图中。他们的方法适用于大多数3D感知任务。他们展示了两个例子:三维物体检测和BEV地图分割。

检测。他们使用特定于类的中心热图头来预测所有对象的中心位置,并使用一些回归头来估计对象的大小、旋转和速度。我们建议读者参考之前的3D检测论文[1, 67, 68]了解更多细节。

分割。不同的地图类别可能会重叠(例如,人行横道是可驾驶空间的子集)。因此,他们将这个问题表述为多个二进制语义分割,每个类一个。他们遵循CVT,用标准focal loss来训练分割头。

参考文献

https://download.csdn.net/blog/column/11257654/134724055

Bevfusion: A Simple and Robust LiDAR-Camera

BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework - 知乎

BEVFusion:A Simple and Robust LiDAR-Camera Fusion Framework 论文笔记_bevfusion: a simple and robust lidar-camera fusion-CSDN博客

Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation

技术精讲 | BEVFusion: 基于统一BEV表征的多任务多传感器融合-CSDN博客 

BEVFusion论文解读-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/66254.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OSI七层协议——分层网络协议

OSI七层协议,顾名思义,分为七层,实际上七层是不存在的,是人为的进行划分,让人更好的理解 七层协议包括,物理层(我),数据链路层(据),网络层(网),传输层(传输),会话层(会),表示层(表),应用层(用)(记忆口诀->我会用表…

【Mysql进阶知识】Mysql 程序的介绍、选项在命令行配置文件的使用、选项在配置文件中的语法

目录 一、程序介绍 二、mysqld--mysql服务器介绍 三、mysql - MySQL 命令行客户端 3.1 客户端介绍 3.2 mysql 客户端选项 指定选项的方式 mysql 客户端命令常用选项 在命令行中使用选项 选项(配置)文件 使用方法 选项文件位置及加载顺序 选项文件语法 使用举例&am…

wireshark抓路由器上的包 抓包路由器数据

文字目录 抓包流程概述设置抓包配置选项 设置信道设置无线数据包加密信息设置MAC地址过滤器 抓取联网过程 抓包流程概述 使用Omnipeek软件分析网络数据包的流程大概可以分为以下几个步骤: 扫描路由器信息,确定抓包信道;设置连接路由器的…

【蓝桥杯】43687.赢球票

题目描述 某机构举办球票大奖赛。获奖选手有机会赢得若干张球票。 主持人拿出 N 张卡片(上面写着 1⋯N 的数字),打乱顺序,排成一个圆圈。 你可以从任意一张卡片开始顺时针数数: 1,2,3 ⋯ ⋯ 如果数到的数字刚好和卡片上的数字…

微软开源AI Agent AutoGen 详解

AutoGen是微软发布的一个用于构建AI Agent系统的开源框架,旨在简化事件驱动、分布式、可扩展和弹性Agent应用程序的创建过程。 开源地址: GitHub - microsoft/autogen: A programming framework for agentic AI 🤖 PyPi: autogen-agentchat Discord: https://aka.ms/auto…

【Elasticsearch】全文搜索与相关性排序

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…

用css和html制作太极图

目录 css相关参数介绍 边距 边框 伪元素选择器 太极图案例实现、 代码 效果 css相关参数介绍 边距 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>*{margin: 0;padding: 0;}div{width: …

【React】插槽渲染机制

目录 通过 children 属性结合条件渲染通过 children 和 slot 属性实现具名插槽通过 props 实现具名插槽 在 React 中&#xff0c;并没有直接类似于 Vue 中的“插槽”机制&#xff08;slot&#xff09;。但是&#xff0c;React 可以通过 props和 children 来实现类似插槽的功能…

【Go】Go Gorm 详解

1. 概念 Gorm 官网&#xff1a;https://gorm.io/zh_CN/docs/ Gorm&#xff1a;The fantastic ORM library for Golang aims to be developer friendly&#xff0c;这是官网的介绍&#xff0c;简单来说 Gorm 就是一款高性能的 Golang ORM 库&#xff0c;便于开发人员提高效率 那…

【MySQL实战】mysql_exporter+Prometheus+Grafana

要在Prometheus和Grafana中监控MySQL数据库&#xff0c;如下图&#xff1a; 可以使用mysql_exporter。 以下是一些步骤来设置和配置这个监控环境&#xff1a; 1. 安装和配置Prometheus&#xff1a; - 下载和安装Prometheus。 - 在prometheus.yml中配置MySQL通过添加以下内…

【Apache Doris】周FAQ集锦:第 29 期

引言 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和开发者分享有关 Apache Doris 的常见问题。 通过这个每周 FAQ 栏目&#xff0c;希望帮助社…

Linux:文件描述符fd、系统调用open

目录 一、文件基础认识 二、C语言操作文件的接口 1.> 和 >> 2.理解“当前路径” 三、相关系统调用 1.open 2.文件描述符 3.一切皆文件 4.再次理解重定向 一、文件基础认识 文件 内容 属性。换句话说&#xff0c;如果在电脑上新建了一个空白文档&#xff0…

鸿蒙动态路由实现方案

背景 随着CSDN 鸿蒙APP 业务功能的增加&#xff0c;以及为了与iOS、Android 端统一页面跳转路由&#xff0c;以及动态下发路由链接&#xff0c;路由重定向等功能。鸿蒙动态路由方案的实现迫在眉睫。 实现方案 鸿蒙版本动态路由的实现原理&#xff0c;类似于 iOS与Android的实…

计算机网络 (42)远程终端协议TELNET

前言 Telnet&#xff08;Telecommunication Network Protocol&#xff09;是一种网络协议&#xff0c;属于TCP/IP协议族&#xff0c;主要用于提供远程登录服务。 一、概述 Telnet协议是一种远程终端协议&#xff0c;它允许用户通过终端仿真器连接到远程主机&#xff0c;并在远程…

汽车网络信息安全-ISO/SAE 21434解析(上)

目录 概述 第四章-概述 1. 研究对象和范围 2. 风险管理 第五章-组织级网络安全管理 1. 网络安全治理&#xff08;cybersecurity governance&#xff09; 2. 网络安全文化&#xff08;cybersecurity culture) 3. 信息共享&#xff08;Information Sharing) 4. 管理体系…

cursor+deepseek构建自己的AI编程助手

文章目录 准备工作在Cursor中添加deepseek 准备工作 下载安装Cursor &#xff08;默认安装在C盘&#xff09; 注册deepseek获取API key 在Cursor中添加deepseek 1、打开cursor&#xff0c;选择设置 选择Model&#xff0c;添加deepseek-chat 注意这里去掉其他的勾选项&…

微调神经机器翻译模型全流程

MBART: Multilingual Denoising Pre-training for Neural Machine Translation 模型下载 mBART 是一个基于序列到序列的去噪自编码器&#xff0c;使用 BART 目标在多种语言的大规模单语语料库上进行预训练。mBART 是首批通过去噪完整文本在多种语言上预训练序列到序列模型的方…

STM32网络通讯之CubeMX实现LWIP项目设计(十五)

STM32F407 系列文章 - ETH-LWIP-CubeMX&#xff08;十五&#xff09; 目录 前言 一、软件设计 二、CubeMX实现 1.配置前准备 2.CubeMX配置 1.ETH模块配置 2.时钟模块配置 3.中断模块配置 4.RCC及SYS配置 5.LWIP模块配置 3.生成代码 1.main文件 2.用户层源文件 3.…

【Unity-Game4Automation PRO 插件】

Game4Automation PRO 插件 是一个用于 Unity 引擎 的工业自动化仿真工具&#xff0c;它提供了对工业自动化领域的仿真和虚拟调试支持&#xff0c;特别是在与工业机器人、生产线、PLC 系统的集成方面。该插件旨在将工业自动化的实时仿真与游戏开发的高质量 3D 可视化能力结合起来…

【安卓开发】【Android】总结:安卓技能树

【持续更新】 对笔者在安卓开发的实践中认为必要的知识点和遇到的问题进行总结。 一、基础知识部分 1、Android Studio软件使用 软件界面 最新的版本是瓢虫&#xff08;Ladybug&#xff09;&#xff0c;bug的确挺多。笔者更习惯使用电鳗&#xff08;Electric Eel&#xff0…