矩母函数(MGF)

矩母函数(MGF)简介

矩母函数(Moment Generating Function,MGF)是概率统计中描述随机变量分布特征的重要工具。MGF的主要用途是通过导数来计算随机变量的矩(比如均值、方差等),同时它也能帮助确定随机变量的分布。

定义

对于随机变量 X X X,其矩母函数 M X ( t ) M_X(t) MX(t) 定义为:

M X ( t ) = E [ e t X ] = ∫ − ∞ ∞ e t x f X ( x ) d x M_X(t) = \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx MX(t)=E[etX]=etxfX(x)dx

  • t t t 是实数;
  • f X ( x ) f_X(x) fX(x) 是随机变量 X X X 的概率密度函数(对于离散分布,积分换成求和)。

矩母函数在 t = 0 t=0 t=0 的值总是 1,即 M X ( 0 ) = 1 M_X(0) = 1 MX(0)=1

性质
  1. 矩的生成:随机变量的 n n n 阶原点矩可由 M X ( t ) M_X(t) MX(t) n n n 阶导数得到:
    E [ X n ] = M X ( n ) ( 0 ) \mathbb{E}[X^n] = M_X^{(n)}(0) E[Xn]=MX(n)(0)
    即在 t = 0 t=0 t=0 处对 t t t n n n 阶导数。

  2. 分布唯一性:如果两个随机变量 X X X Y Y Y 的矩母函数在某个区间内一致,则它们具有相同的分布。

  3. 独立性:如果 X X X Y Y Y 独立,则 Z = X + Y Z = X + Y Z=X+Y 的矩母函数是 X X X Y Y Y 的矩母函数的乘积:
    M Z ( t ) = M X ( t ) ⋅ M Y ( t ) M_Z(t) = M_X(t) \cdot M_Y(t) MZ(t)=MX(t)MY(t)


例子:指数分布的矩母函数

1. 指数分布定义

假设随机变量 X X X 遵循参数为 λ > 0 \lambda > 0 λ>0 的指数分布,其概率密度函数为:
f X ( x ) = λ e − λ x , x ≥ 0 f_X(x) = \lambda e^{-\lambda x}, \quad x \geq 0 fX(x)=λeλx,x0

2. 矩母函数计算

根据矩母函数的定义:
M X ( t ) = E [ e t X ] = ∫ 0 ∞ e t x ⋅ λ e − λ x d x M_X(t) = \mathbb{E}[e^{tX}] = \int_{0}^{\infty} e^{tx} \cdot \lambda e^{-\lambda x} dx MX(t)=E[etX]=0etxλeλxdx

合并指数项 e t x ⋅ e − λ x = e − ( λ − t ) x e^{tx} \cdot e^{-\lambda x} = e^{-(\lambda - t)x} etxeλx=e(λt)x,得:
M X ( t ) = λ ∫ 0 ∞ e − ( λ − t ) x d x M_X(t) = \lambda \int_{0}^{\infty} e^{-(\lambda - t)x} dx MX(t)=λ0e(λt)xdx

积分结果为:
∫ 0 ∞ e − a x d x = 1 a , a > 0 \int_{0}^{\infty} e^{-ax} dx = \frac{1}{a}, \quad a > 0 0eaxdx=a1,a>0

因此,当 t < λ t < \lambda t<λ 时:
M X ( t ) = λ λ − t M_X(t) = \frac{\lambda}{\lambda - t} MX(t)=λtλ

而当 t ≥ λ t \geq \lambda tλ 时,积分发散,MGF 不存在。

3. 利用 MGF 计算均值和方差
  • 均值:随机变量的均值是矩母函数的导数在 t = 0 t = 0 t=0 处的值:
    E [ X ] = M X ′ ( 0 ) \mathbb{E}[X] = M_X'(0) E[X]=MX(0)
    M X ( t ) = λ λ − t M_X(t) = \frac{\lambda}{\lambda - t} MX(t)=λtλ 求导:
    M X ′ ( t ) = λ ( λ − t ) 2 M_X'(t) = \frac{\lambda}{(\lambda - t)^2} MX(t)=(λt)2λ
    t = 0 t = 0 t=0 时:
    M X ′ ( 0 ) = λ λ 2 = 1 λ M_X'(0) = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda} MX(0)=λ2λ=λ1
    所以,均值 E [ X ] = 1 λ \mathbb{E}[X] = \frac{1}{\lambda} E[X]=λ1

  • 方差:随机变量的方差可以由 E [ X 2 ] − ( E [ X ] ) 2 \mathbb{E}[X^2] - (\mathbb{E}[X])^2 E[X2](E[X])2 得到,而 E [ X 2 ] = M X ′ ′ ( 0 ) \mathbb{E}[X^2] = M_X''(0) E[X2]=MX′′(0)。对 M X ′ ( t ) M_X'(t) MX(t) 再求导:
    M X ′ ′ ( t ) = 2 λ ( λ − t ) 3 M_X''(t) = \frac{2\lambda}{(\lambda - t)^3} MX′′(t)=(λt)32λ
    t = 0 t = 0 t=0 时:
    M X ′ ′ ( 0 ) = 2 λ λ 3 = 2 λ 2 M_X''(0) = \frac{2\lambda}{\lambda^3} = \frac{2}{\lambda^2} MX′′(0)=λ32λ=λ22
    所以:
    方差 Var ( X ) = E [ X 2 ] − ( E [ X ] ) 2 = 2 λ 2 − ( 1 λ ) 2 = 1 λ 2 \text{方差 } \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2} 方差 Var(X)=E[X2](E[X])2=λ22(λ1)2=λ21


总结

矩母函数是分析随机变量特性的重要工具,其计算遵循积分定义。通过矩母函数,能有效推导随机变量的均值、方差及高阶矩等信息。在实际应用中,掌握如何从分布定义出发计算 MGF 是关键步骤。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65521.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React中的合成事件

合成事件与原生事件 区别&#xff1a; 1. 命名不一样&#xff0c;原生用纯小写方式&#xff0c;react用小驼峰的方式 原生&#xff1a;onclick React的&#xff1a;onClick 2. 事件处理函数的写法不一样 原生的是传入一个字符串&#xff0c;react写法传入一个回调函数 3.…

ajax与json

目录 1、ajax1.1、什么是ajax1.2、ajax核心AJAX 工作原理示例代码重要属性和方法兼容性 1.3、jQuery ajax什么是jQuery ajaxjQuery AJAX 核心概念基本用法1. **使用 $.ajax() 方法**2. **使用简化方法****使用 $.get() 方法****使用 $.post() 方法** 常用配置选项示例&#xff…

CSS——26. 伪元素2(“::before ,::after”)

::before伪类 <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>伪元素</title><style type"text/css">div::before{content: "我最棒";}}</style></head><body><!--…

Openssl1.1.1s rpm包构建与升级

rpmbuild入门知识 openssh/ssl二进制升级 文章目录 前言一、资源准备1.下载openssh、openssl二进制包2.安装rpmbuild工具3.拷贝源码包到SOURCES目录下4.系统开启telnet&#xff0c;防止意外导致shh无法连接5.编译工具安装6.补充说明 二、制作 OpenSSL RPM 包1.编写 SPEC 文件2.…

patchwork++地面分割学习笔记

参考资料&#xff1a;古月居 - ROS机器人知识分享社区 https://zhuanlan.zhihu.com/p/644297447 patchwork算法一共包含四部分内容&#xff1a;提出了以下四个部分&#xff1a;RNR、RVPF、A-GLE 和 TGR。 1&#xff09;基于 3D LiDAR 反射模型的反射噪声消除 (RNR)&#xff…

基于Spring Boot的海滨体育馆管理系统的设计与实现

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的海滨体育馆管理系统的设计与实现。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 宠物医院…

通过Android Studio修改第三方jar包并重新生成jar包

最近接手了来自公司其他同事的一个Unity项目,里面有一个封装的jar包要改动一下,无奈关于这个jar包的原工程文件丢失了,于是自己动手来修改下jar包,并做下记录。 一、导入第三方jar包 1、新建项目EditJarDemo(项目名随便取) 2、新建libs文件夹,把你要修改的third.jar 复制…

浅尝Selenium自动化框架

浅尝Selenium自动化框架 Selenium基本介绍Selenium原理Selenium学习要点写个Selenium Demo结束 Selenium基本介绍 Selenium 是一个开源的自动化测试工具&#xff0c;只用于测试 Web 应用程序。它支持多种编程语言&#xff08;如 Java、Python、C# 等&#xff09;来编写测试脚本…

计算机网络之---物理层设备

什么是物理层设备 物理层设备是指负责数据在物理媒介上传输的硬件设备&#xff0c;它们主要处理数据的转换、信号的传输与接收&#xff0c;而不涉及数据的内容或意义。常见的物理层设备包括网卡、集线器、光纤收发器、调制解调器等。 物理层设备有哪些 1、网卡&#xff08;N…

SQL中的数据库对象

视图&#xff1a;VIEW 概念 ① 虚拟表&#xff0c;本身不存储数据&#xff0c;可以看做是存储起来的SELECT语句 ② 视图中SELECT语句中涉及到的表&#xff0c;称为基表 ③ 针对视图做DML操作&#xff0c;对影响到基表中的数据&#xff0c;反之亦然 ④ 创建、删除视图本身&#…

flink的EventTime和Watermark

时间机制 Flink中的时间机制主要用在判断是否触发时间窗口window的计算。 在Flink中有三种时间概念&#xff1a;ProcessTime、IngestionTime、EventTime。 ProcessTime&#xff1a;是在数据抵达算子产生的时间&#xff08;Flink默认使用ProcessTime&#xff09; IngestionT…

web服务器架构,websocket

1. 非前后端分离架构 1. 前端html后端servlet 被tomcat服务器打包&#xff0c;统一指定根目录入口。通过原生表单发送到后端&#xff0c;后端根据请求数据进行重定向或请求转发&#xff0c;这样就不能进行动态渲染&#xff0c;也就必须存在很多静态html对应每一个请求。 这里…

Ubuntu 下测试 NVME SSD 的读写速度

在 Ubuntu 系统下&#xff0c;测试 NVME SSD 的读写速度&#xff0c;有好多种方法&#xff0c;常用的有如下几种&#xff1a; 1. Gnome-disks Gnome-disks&#xff08;也称为“Disks”&#xff09;是 GNOME 桌面环境中的磁盘管理工具&#xff0c;有图形界面&#xff0c;是测试…

SpringBoot之核心配置

学习目标&#xff1a; 1.熟悉Spring Boot全局配置文件的使用 2.掌握Spring Boot配置文件属性值注入 3.熟悉Spring Boot自定义配置 4.掌握Profile多环境配置 5.了解随机值设置以及参数间引用 1.全局配置文件 Spring Boot使用 application.properties 或者application.yaml 的文…

后端服务集成ElasticSearch搜索功能技术方案

文章目录 一、为什么选用ElasticSearch二、ElasticSearch基本概念1、文档和字段2、索引和映射3、倒排索引、文档和词条4、分词器 三、ElasticSearch工作原理1、Term Dictionary、Term index2、Stored Fields3、Docs Values4、Segment5、Lucene6、高性能、高扩展性、高可用①高性…

举例说明AI模型怎么聚类,最后神经网络怎么保存

举例说明怎么聚类,最后神经网络怎么保存 目录 举例说明怎么聚类,最后神经网络怎么保存K - Means聚类算法实现神经元特征聚类划分成不同专家的原理和过程 特征提取: 首先,需要从神经元中提取有代表性的特征。例如,对于一个多层感知机(MLP)中的神经元,其权重向量可以作为特…

ocrmypdf使用时的cannot import name ‘PdfMatrix‘ from ‘pikepdf‘问题

最近在做pdf的ocr,之前使用过ocrmypdf&#xff0c;打算再次使用&#xff0c;发现它更新了&#xff0c;所以就打算使用最新版 环境&#xff1a;win11anaconda 创建虚拟环境后安装语句&#xff1a; pip install ocrmypdf -i https://pypi.tuna.tsinghua.edu.cn/simple pip in…

【JavaEE进阶】获取Cookie/Session

&#x1f340;Cookie简介 HTTP协议自身是属于 "⽆状态"协议. "⽆状态"的含义指的是: 默认情况下 HTTP 协议的客⼾端和服务器之间的这次通信,和下次通信之间没有直接的联系.但是实际开发中,我们很多时候是需要知道请求之间的关联关系的. 例如登陆⽹站成…

Oracle:ORA-00904: “10“: 标识符无效报错详解

1.报错Oracle语句如下 SELECT YK_CKGY.ID,YK_CKGY.DJH,YK_CKGY.BLRQ,YK_CKGY.ZBRQ,YK_CKGY.SHRQ,YK_CKGY.YT,YK_CKGY.ZDR,YK_CKGY.SHR,YK_CKGY.BZ,YK_CKGY.JZRQ,YK_CKGY.ZT,YK_CKGY.CKLX,(case YK_CKGY.CKLXwhen 09 then药房调借when 02 then科室退药when 03 then损耗出库when…

Linux 磁盘管理命令:使用xfs 管理命令

文章目录 Linux磁盘管理命令使用xfs 管理命令1.命令说明2&#xff0e;建立 XFS 文件系统4&#xff0e;调整 XFS 文件系统各项参数5&#xff0e;在线调整 XFS 文件系统的大小6&#xff0e;暂停和恢复 XFS 文件系统7&#xff0e;尝试修复受损的 XFS 文件系统8&#xff0e;备份和恢…