Python基于Gradio可视化部署机器学习应用

Gradio 是一个用于快速创建机器学习模型和用户界面之间交互的 Python 库。它允许你无需编写大量前端代码,就能将机器学习模型部署为可交互的网页应用。以下是一个基于 Gradio 可视化部署机器学习应用的基本步骤:

  1. 安装 Gradio
    首先,你需要安装 Gradio 库。你可以使用 pip 来安装:

    pip install gradio
    
  2. 导入 Gradio 并定义界面
    在你的 Python 脚本中,导入 Gradio,并定义输入和输出的组件。这些组件将构成你的交互界面的基础。

  3. 加载机器学习模型
    加载你已经训练好的机器学习模型。这可以是一个 scikit-learn 模型、TensorFlow 模型、PyTorch 模型等。

  4. 定义预测函数
    创建一个函数,该函数接受 Gradio 界面上的输入,使用加载的模型进行预测,并返回预测结果。

  5. 创建 Gradio 接口
    使用 Gradio 的 Interface 类(或其简写形式 gr.Interface)来创建交互界面。你需要指定输入组件、输出组件以及预测函数。

  6. 启动 Gradio 应用
    调用 launch() 方法来启动 Gradio 应用。默认情况下,它将在本地服务器上运行,并在浏览器中自动打开。

以下是一个简单的示例,展示了如何使用 Gradio 部署一个基于 scikit-learn 的鸢尾花分类模型:

import gradio as gr
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 训练模型
model = LogisticRegression(max_iter=200)
model.fit(X_train, y_train)# 定义预测函数
def predict(sepal_length: float, sepal_width: float, petal_length: float, petal_width: float) -> str:X_new = [[sepal_length, sepal_width, petal_length, petal_width]]X_new_scaled = scaler.transform(X_new)prediction = model.predict(X_new_scaled)return iris.target_names[prediction[0]].capitalize()# 创建 Gradio 接口
iface = gr.Interface(fn=predict,inputs=[gr.inputs.NumberBox(label="Sepal Length"),gr.inputs.NumberBox(label="Sepal Width"),gr.inputs.NumberBox(label="Petal Length"),gr.inputs.NumberBox(label="Petal Width")],outputs=gr.outputs.Textbox(label="Predicted Iris Species"))# 启动 Gradio 应用
iface.launch()

在这个示例中,我们创建了一个简单的 Gradio 界面,用户可以通过输入鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)来预测鸢尾花的种类。预测结果将以文本形式显示。

你可以根据自己的需求调整输入和输出组件,以及预测函数。Gradio 支持多种类型的输入和输出组件,如文本框、下拉菜单、图像上传、滑块等,使得创建复杂的交互界面变得非常容易。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/64979.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot使用RabbitMQ实现关闭超时订单的一个简单示例

1.maven中引入rabbitmq的依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId></dependency> 2.application.yml中进行rabbitmq相关配置&#xff1a; # rabbit…

AE Pinnacle 10x6 kW DeviceNet MDXL User r Manual

AE Pinnacle 10x6 kW DeviceNet MDXL User r Manual

vscode中调用deepseek实现AI辅助编程

来自 Python大数据分析 费弗里 1 简介 大家好我是费老师&#xff0c;最近国产大模型Deepseek v3新版本凭借其优秀的模型推理能力&#xff0c;讨论度非常之高&#x1f525;&#xff0c;且其官网提供的相关大模型API接口服务价格一直走的“价格屠夫”路线&#xff0c;性价比很高…

慧集通iPaaS集成平台低代码培训-基础篇

训练使用素材&#xff1a; 1.数据源&#xff1a; 单号业务日期工厂仓库物料单位数量批次0100012022-5-1210031001030001kg500202304150100012022-5-1210031001030001kg122202304150100012022-5-1210031001030001kg1250202304150100012022-5-1210031001030002kg130202304110100…

在Linux下安装部署Tomcat教程

摘要 Tomcat是由Apache开发的要给Servlet容器,实现了对Servlet 和JSP的支持,并提供了作为Web服务器的一些特有功能,如Tomcat管理和控制平台,安全管理和Tomcat阀等。简单来说,Tomcat是一个由WEB应用程序的托管平台,可以让用户编写的WEB应用程序,别Tomcat所托管,并提供网…

《探秘开源大模型:AI 世界的“超级引擎”》

《探秘开源大模型:AI 世界的“超级引擎”》 一、开源大模型崛起之路二、开源大模型发展历程回顾(一)早期奠基:理论突破与初步实践(二)快速发展:百花齐放的模型格局(三)当下态势:走向成熟与多元融合三、开源大模型核心技术剖析(一)Transformer 架构:基石之稳(二)…

Leetcode打卡:我的日程安排表II

执行结果&#xff1a;通过 题目 731 我的日程安排表II 实现一个程序来存放你的日程安排。如果要添加的时间内不会导致三重预订时&#xff0c;则可以存储这个新的日程安排。 当三个日程安排有一些时间上的交叉时&#xff08;例如三个日程安排都在同一时间内&#xff09;&#…

实现一个通用的树形结构构建工具

文章目录 1. 前言2. 树结构3. 具体实现逻辑3.1 TreeNode3.2 TreeUtils3.3 例子 4. 小结 1. 前言 树结构的生成在项目中应该都比较常见&#xff0c;比如部门结构树的生成&#xff0c;目录结构树的生成&#xff0c;但是大家有没有想过&#xff0c;如果在一个项目中有多个树结构&…

day30-awk进阶

awk模式种类 awk的模式分为这几种 正则表达式 基本正则扩展正则比较表达式范围表达式特殊模式 BEGINEND awk比较运算符&#xff08;语法&#xff09; 关系运算符解释示例<小于x<y<小于等于x<y等于xy!不等于x!y>大于等于x>y>大于x>y~匹配正则x~/正则…

数据库新建用户后(Host:%),报错:localhost无法连接

存在问题 在给数据库&#xff08;MySQL、MariaDB等&#xff09;创建了新的用户名&#xff08;eg&#xff1a;maxscale&#xff09;后&#xff0c;无法使用新用户名登录&#xff0c;并报如下错误&#xff1a;ERROR 1045 (28000): Access denied for user maxscalelocalhost (us…

2024年大型语言模型(LLMs)的发展回顾

2024年对大型语言模型&#xff08;LLMs&#xff09;来说是充满变革的一年。以下是对过去一年中LLMs领域的关键进展和主题的总结。 GPT-4的壁垒被打破 去年&#xff0c;我们还在讨论如何构建超越GPT-4的模型。如今&#xff0c;已有18个组织拥有在Chatbot Arena排行榜上超越原…

数据挖掘——支持向量机分类器

数据挖掘——支持向量机分类器 支持向量机最小间隔面推导基于软间隔的C-SVM非线性SVM与核变换常用核函数 支持向量机 根据统计学习理论&#xff0c;学习机器的实际风险由经验风险值和置信范围值两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小…

在 SQL 中,区分 聚合列 和 非聚合列(nonaggregated column)

文章目录 1. 什么是聚合列&#xff1f;2. 什么是非聚合列&#xff1f;3. 在 GROUP BY 查询中的非聚合列问题示例解决方案 4. 为什么 only_full_group_by 要求非聚合列出现在 GROUP BY 中&#xff1f;5. 如何判断一个列是聚合列还是非聚合列&#xff1f;6. 总结 在 SQL 中&#…

petalinux2017.4对linux4.9.0打实时补丁

准备工作&#xff1a; 1.windows&#xff1a;安装vivado 2017.4&#xff0c;xilinx sdk 2017.4 2.ubuntu16.04&#xff1a;安装petalinux 2017 3.黑金ax7020&#xff0c;sd卡 一、准备linux内核的操作系统 1.1 Petalinux配置 Petalinux使用教程-CSDN博客非常详细&#xf…

Golang的缓存一致性策略

Golang的缓存一致性策略 一致性哈希算法 在Golang中&#xff0c;缓存一致性策略通常使用一致性哈希算法来实现。一致性哈希算法能够有效地解决缓存节点的动态扩容、缩容时数据重新分布的问题&#xff0c;同时能够保证数据访问的均衡性。 一致性哈希算法的核心思想是将节点的哈希…

蓝桥杯JAVA--003

需求 2.代码 public class RegularExpressionMatching {public boolean isMatch(String s, String p) {if (p.isEmpty()) {return s.isEmpty();}boolean firstMatch !s.isEmpty() && (s.charAt(0) p.charAt(0) || p.charAt(0) .);if (p.length() > 2 && p…

被催更了,2025元旦源码继续免费送

“时间从来不会停下&#xff0c;它只会匆匆流逝。抓住每一刻&#xff0c;我们才不会辜负自己。” 联系作者免费领&#x1f496;源&#x1f496;码。 三联支持&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;欢迎留言讨论 更多内容敬请期待。如有需要源码可以联系作者免…

WebRTC的线程事件处理

1. 不同平台下处理事件的API&#xff1a; Linux系统下&#xff0c;处理事件的API是epoll或者select&#xff1b;Windows系统下&#xff0c;处理事件的API是WSAEventSelect&#xff0c;完全端口&#xff1b;Mac系统下&#xff0c;kqueue 2. WebRTC下的事件处理类&#xff1a; …

关于Zotero

1、文献数据库&#xff1a; Zotero的安装 Zotero安装使用_zotero只能安装在c盘吗-CSDN博客 2、如何使用zotero插件 我刚下载的时候就结合使用的是下面的这两个博主的分享&#xff0c;感觉暂时是足够的。 Zotero入&#x1f6aa;基础 - 小红书 Green Frog申请easyscholar密钥…

企业三要素如何用PHP实现调用

一、什么是企业三要素&#xff1f; 企业三要素即传入的企业名称、法人名称、社会统一信用代码或注册号&#xff0c;校验此三项是否一致。 二、具体怎么样通过PHP实现接口调用&#xff1f; 下面我们以阿里云为例&#xff0c;通过PHP示例代码进行调用&#xff0c;参考如下&…