LeetCode--排序算法(堆排序、归并排序、快速排序)

排序算法

  • 归并排序
    • 算法思路
    • 代码
    • 时间复杂度
  • 堆排序
    • 什么是堆?
    • 如何维护堆?
    • 如何建堆?
    • 堆排序
    • 时间复杂度
  • 快速排序
    • 算法思想
    • 代码
    • 时间复杂度

归并排序

算法思路

归并排序算法有两个基本的操作,一个是,也就是把原数组划分成两个子数组的过程。另一个是,它将两个有序数组合并成一个更大的有序数组。

将待排序的线性表不断地切分成若干个子表,直到每个子表只包含一个元素,这时,可以认为只包含一个元素的子表是有序表。
将子表两两合并,每合并一次,就会产生一个新的且更长的有序表,重复这一步骤,直到最后只剩下一个子表,这个子表就是排好序的线性表。
在这里插入图片描述

代码

// 归并排序
public int[] sortArray(int[] nums) {return mergeSort(nums, 0, nums.length - 1);
}private int[] mergeSort(int[] nums, int left, int right) {// 递归终止条件if (left >= right) {// 返回单个元素的数组return new int[]{nums[left]};}// 分治int mid = (left 0+ right) / 2;// 分别对左右子数组进行排序int[] leftArr = mergeSort(nums, left, mid);int[] rightArr = mergeSort(nums, mid + 1, right);int[] res = new int[leftArr.length + rightArr.length];// 合并两个有序数组int i = 0, j = 0, k = 0;while (i < leftArr.length && j < rightArr.length) {if (leftArr[i] <= rightArr[j]) {res[k++] = leftArr[i++];} else {res[k++] = rightArr[j++];}}while (i < leftArr.length) {res[k++] = leftArr[i++];}while (j < rightArr.length) {res[k++] = rightArr[j++];}return res;
}

时间复杂度

O(nlogn)

堆排序

什么是堆?

如下图(大根堆)(二叉)堆是一个数组,它可以被看成一个完全二叉树。
二叉树形式:
在这里插入图片描述
数组形式:
在这里插入图片描述
堆的根节点在数组中的下标为0,我们很容易得到左孩子为1,右孩子为2,第i个节点的左孩子为2i+1,右孩子为2i+2 。
二叉堆分为两种形式:大根堆和小根堆。大根堆性质,根节点的值大于所以子树节点的值。小根堆性质,根节点的值小于所以子树节点的值。

如何维护堆?

Java代码维护大根堆:

//维护大根堆
private void heapify(int n,int i) {//当前根节点int largest = i;//左孩子节点int lchild = 2*i+1;//右孩子节点int rchild = 2*i+2;//找三个元素最大的作为父节点if (lchild < n && nums[lchild] > nums[largest]) {largest = lchild;}if (rchild < n && nums[rchild] > nums[largest]) {largest = rchild;}//如果交换则维护交换后的if (largest != i) {swap(largest,i);heapify(n,largest);}
}

问题:为啥交换后,只需要维护交换后的子节点呢?
举一个例子:
在这里插入图片描述
根节点需要跟左孩子交换,交换后,根节点的右子树并未改变树结构,则只需要递归维护根节点左子树的堆性质。

如何建堆?

我们可以用自低向上的方法利用上面维护堆的算法heapify来建堆。子数组从n/2开始都是树的叶子节点。每个叶子节点可以被看成包含一个元素的堆。所以建堆的过程从n/2-1–>0 。

//1.建堆//从最后一个有孩子的节点开始 n/2-1for (int i = n/2-1; i >= 0; i--) {heapify(n,i);}

堆排序

前面我们利用建堆算法成功建立一个大根堆。因为数组最大元素总在根节点nums[0]中,通过把它与nums[n-1]交换,我们可以让该元素放到正确的位置。这时候,如果我们从堆中去掉节点n-1,剩余节点中根的孩子结点仍然是大根堆,而新的根节点可能违背大根堆性质。为了维护大根堆性质,需要不断调用 heapify 从而在nums 上构建一个新的大根堆。堆排序算法会不断重复这个过程,直到堆的大小从n-1降到1 。

给出完整的堆排序算法:

private int[] nums;// 待排序数组
//堆排序									
private void heap_sort(int n) {//1.建堆//从最后一个有孩子的节点开始 n/2-1for (int i = n/2-1; i >= 0; i--) {heapify(n,i);}//2.堆排序for (int i = n-1; i > 0; i--) {swap(i,0);//交换最后一个和根元素heapify(i,0);//交换后维护}
}
//维护大根堆
private void heapify(int n,int i) {int largest = i;int lchild = 2*i+1;int rchild = 2*i+2;//找三个元素最大的作为父节点if (lchild < n && nums[lchild] > nums[largest]) {largest = lchild;}if (rchild < n && nums[rchild] > nums[largest]) {largest = rchild;}//如果交换则维护交换后的if (largest != i) {swap(largest,i);heapify(n,largest);}
}private void swap(int i,int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;
}

时间复杂度

O(nlogn)

快速排序

算法思想

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:

1、首先设定一个基数,通过该基数将数组分成左右两部分。

2、将大于或等于基数的数据集中到数组右边,小于基数的数据集中到数组的左边。此时,左边部分中各元素都小于或等于基数,而右边部分中各元素都大于或等于基数。

3、然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个基数,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

4、重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

概括来说为 挖坑填数 + 分治法。
在这里插入图片描述

代码

代码中使用Random作为随机生成器生成基数,思想不变,只是基数选取的方式改变。

private int[] nums;
// 随机数生成器, 用于生成选择基数元素
private final Random random = new Random();public int[] sortArray(int[] nums) {this.nums = nums;quickSort(0, nums.length - 1);return nums;
}
public void quickSort(int left, int right) {// 递归终止条件if (left >= right) {return;}// 调用partition函数,对数组进行分区,并获取基准元素的最终位置int pivot = partition(left, right);// 递归调用,对左子数组进行快速排序quickSort(left, pivot - 1);// 递归调用,对右子数组进行快速排序quickSort(pivot + 1, right);
}
public int partition(int left, int right) {// 生成一个随机的基准元素位置int pivot = random.nextInt(right - left + 1) + left;// 保存基准元素的值int pivotVal = nums[pivot];// 将基准元素交换到数组的最后一个位置swap(pivot, right);// 定义两个指针,i指向数组的最左边,j指向数组的最右边int i = left, j = right;while (i < j) {// 从左向右找到第一个大于等于基准元素的位置while (i < j && nums[i] <= pivotVal) {i++;}// 从右向左找到第一个小于等于基准元素的位置while (i < j && nums[j] >= pivotVal) {j--;}// 如果i和j指向的位置不合法,则交换i和j指向的元素if (i < j) {swap(i, j);}}// 将基准元素交换到正确的位置swap(i, right);return i;
}public void swap(int i, int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;
}

时间复杂度

O(nlogn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/64690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Debian-linux运维-docker安装和配置

腾讯云搭建docker官方文档&#xff1a;https://cloud.tencent.com/document/product/213/46000 阿里云安装Docker官方文档&#xff1a;https://help.aliyun.com/zh/ecs/use-cases/install-and-use-docker-on-a-linux-ecs-instance 天翼云常见docker源配置指导&#xff1a;htt…

Qt6.8.1 Mingw13.1 编译opencv4.10时cannot convert ‘char*‘ to ‘LPWSTR

当选择build_world时出错 G:\ForOpencv4.10\opencv-4.10.0\modules\core\src\utils\filesystem.cpp: In function cv::String cv::utils::fs::getCacheDirectory(const char*, const char*): G:\ForOpencv4.10\opencv-4.10.0\modules\core\src\utils\filesystem.cpp:442:43: e…

通过无障碍服务(AccessibilityService)实现Android设备全局水印显示

一、无障碍功能简介 首先我们先来了解下无障碍功能的官方介绍&#xff1a; 无障碍服务仅应用于帮助残障用户使用 Android 设备和应用。它们在后台运行&#xff0c;并在触发 AccessibilityEvents 时接收系统的回调。此类事件表示用户界面中的某些状态转换&#xff0c;例如焦点已…

使用 Docker 搭建 Hadoop 集群

1.1. 启用 WSL 与虚拟机平台 1.1.1. 启用功能 启用 WSL并使用 Moba 连接-CSDN博客 1.2 安装 Docker Desktop 最新版本链接&#xff1a;Docker Desktop: The #1 Containerization Tool for Developers | Docker 指定版本链接&#xff1a;Docker Desktop release notes | Do…

【YOLO 项目实战】(12)红外/可见光多模态目标检测

欢迎关注『youcans动手学模型』系列 本专栏内容和资源同步到 GitHub/youcans 【YOLO 项目实战】&#xff08;10&#xff09;YOLO8 环境配置与推理检测 【YOLO 项目实战】&#xff08;11&#xff09;YOLO8 数据集与模型训练 【YOLO 项目实战】&#xff08;12&#xff09;红外/可…

logback日志框架源码分析

目录 (一)入口:slf4j选择日志框架 (二)日志框架初始化 (1)logback的3种配置方式 a、BasicConfigurator默认配置 b、SPI方式配置的Configurator实现类 c、通过配置文件初始化 (2)xml配置文件初始化 (三)Logger的创建 (四)打印日志 本文源码基于:logback版…

国产数据库OceanBase从入门到放弃教程

1. 介绍 是由蚂蚁集团&#xff08;Ant Group&#xff0c;原蚂蚁金服&#xff09;自主研发的分布式关系型数据库。它旨在解决海量数据存储和高并发访问的问题&#xff0c;特别适合金融级应用场景&#xff0c;如支付宝等对数据一致性、可靠性和性能有极高要求的服务。以下是关于…

连接Milvus

连接到Milvus 验证Milvus服务器正在侦听哪个本地端口。将容器名称替换为您自己的名称。 docker port milvus-standalone 19530/tcp docker port milvus-standalone 2379/tcp docker port milvus-standalone 192.168.1.242:9091/api/v1/health 使用浏览器访问连接地址htt…

安卓入门二 Kotlin基础

Kotlin Kotlin的历史 Kotlin由Jet Brains公司开发设计&#xff0c;2011年公布第一版&#xff0c;2012年开源。 2016年发布1.0正式版&#xff0c;并且Jet Brains在IDEA加入对Kotlin的支持&#xff0c;安卓自此又有新的选择。 2019年谷歌宣布Kotlin成为安卓第一开发语言&#x…

淺談Cocos2djs逆向

前言 簡單聊一下cocos2djs手遊的逆向&#xff0c;有任何相關想法歡迎和我討論^^ 一些概念 列出一些個人認為比較有用的概念&#xff1a; Cocos遊戲的兩大開發工具分別是CocosCreator和CocosStudio&#xff0c;區別是前者是cocos2djs專用的開發工具&#xff0c;後者則是coco…

STM32驱动NRF24L01

一、NRF24L01的相关介绍 1.2 引脚的介绍 关于SPI的引脚就不再说了&#xff0c;这里介绍其余的两个引脚&#xff1a; CE 模块控制引脚&#xff1a;芯片开启信号&#xff0c;激活RX或TX模式 IRQ 模块中断信号输出引脚&#xff1a;其低电平有效&#xff0c;也就是中断时变为低电平…

线性代数期末复习 [基础篇]

关于第六点: AXB 在期末考试中一般A都是可逆的 我们可以先把A的逆求出来,X A − 1 B A^-1B A−1B,或者 (A,B) -> r (E, A − 1 B A^-1B A−1B) 如果A矩阵不可逆,转变为方程组求解问题,假设都是二维矩阵 A(x1,x2) (b1,b2) Ax1 b1,Ax2 b2 XAB 如果A可逆,直接XB A − 1 A^-…

Kali 自动化换源脚本编写与使用

1. 背景与需求 在使用 Kali Linux 的过程中&#xff0c;软件源的配置对系统的更新与软件安装速度至关重要。 Kali 的默认官方源提供了安全且最新的软件包&#xff0c;但有时由于网络条件或地理位置的限制&#xff0c;使用官方源可能会出现速度较慢的问题。 为了解决这一问题&a…

【Unity3D】ECS入门学习(十二)IJob、IJobFor、IJobParallelFor

IJob&#xff1a;开启单个线程进行计算&#xff0c;线程内不允许对同一个数据进行操作&#xff0c;也就是如果你想用多个IJob分别计算&#xff0c;将其结果存储到同一个NativeArray<int>数组是不允许的&#xff0c;所以不要这样做&#xff0c;如下例子就是反面教材&#…

InfoNCE Loss详解(上)

引言 InfoNCE对比学习损失是学习句嵌入绕不开的知识点&#xff0c;本文就从头开始来探讨一下它是怎么来的。 先验知识 数学期望与大数定律 期望(expectation&#xff0c;expected value&#xff0c;数学期望&#xff0c;mathematical expectation)是随机变量的平均值&#…

.Net加密与Java互通

.Net加密与Java互通 文章目录 .Net加密与Java互通前言RSA生成私钥和公钥.net加密出数据传给Java端采用java方给出的公钥进行加密采用java方给出的私钥进行解密 .net 解密来自Java端的数据 AES带有向量的AES加密带有向量的AES解密无向量AES加密无向量AES解密 SM2(国密)SM2加密Sm…

工作中常用Vim的命令

Hi, 我是你们的老朋友&#xff0c;主要专注于嵌入式软件开发&#xff0c;有兴趣不要忘记点击关注【码思途远】 目录 0. ctags -R 1.认识 Vim的几种工作模式 2.高频使用命令 2.1 修改文件 2.2 关于行号 2.3 删除多行&#xff0c;删除部分 2.4 复制粘贴 2.5 光标移动 2.…

什么是 Azure OpenAI ?了解微软 Azure OpenAI 和 OpenAI 的关系

一、什么是Azure OpenAI &#xff1f; 微软已与 OpenAI 合作以实现三个主要目标&#xff1a; ⦿利用 Azure 的基础结构&#xff08;包括安全性、合规性和区域可用性&#xff09;&#xff0c;帮助用户构建企业级应用程序。 ⦿在微软产品&#xff08;包括 Azure AI 产品以及以外…

Linux day 1129

家人们今天继续学习Linux&#xff0c;ok话不多说一起去看看吧 三.Linux常用命令 3.1 Linux命令体验 3.1.1 常用命令演示 在这一部分中&#xff0c;我们主要介绍几个常用的命令&#xff0c;让大家快速感 受以下 Linux 指令的操作方式。主要包含以下几个指令&#xff1a; ls命…

SAP HCM 标准报表与前台操作的增强差异逻辑分析(rhgrenz4)

导读 增强差异:SAP的HCM模块组织和人事增强都有标准的增强点&#xff0c;不管你调用标准的函数还是前台操作都会触发对应的增强。所以很多业务不需要考虑那么多分散点&#xff0c;只要找到一个合适的增强点&#xff0c;就能解决很多和外围系统集成的业务逻辑&#xff0c;今天遇…