Universal Thresholdizer:将多种密码学原语门限化

参考文献:

  1. [LS90] Lapidot D, Shamir A. Publicly verifiable non-interactive zero-knowledge proofs[C]//Advances in Cryptology-CRYPTO’90: Proceedings 10. Springer Berlin Heidelberg, 1991: 353-365.
  2. [Shoup00] Shoup V. Practical threshold signatures[C]//Advances in Cryptology—EUROCRYPT 2000: International Conference on the Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19. Springer Berlin Heidelberg, 2000: 207-220.
  3. [AJL+12] Asharov G, Jain A, López-Alt A, et al. Multiparty computation with low communication, computation and interaction via threshold FHE[C]//Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31. Springer Berlin Heidelberg, 2012: 483-501.
  4. [BGI15] Boyle E, Gilboa N, Ishai Y. Function secret sharing[C]//Annual international conference on the theory and applications of cryptographic techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 337-367.
  5. [CM15] Clear M, McGoldrick C. Multi-identity and multi-key leveled FHE from learning with errors[C]//Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II 35. Springer Berlin Heidelberg, 2015: 630-656.
  6. [GVW15] Gorbunov S, Vaikuntanathan V, Wichs D. Leveled fully homomorphic signatures from standard lattices[C]//Proceedings of the forty-seventh annual ACM symposium on Theory of computing. 2015: 469-477.
  7. [GHK+17] Goyal R, Hohenberger S, Koppula V, et al. A generic approach to constructing and proving verifiable random functions[C]//Theory of Cryptography: 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II 15. Springer International Publishing, 2017: 537-566.
  8. [BGG+18] Boneh D, Gennaro R, Goldfeder S, et al. Threshold cryptosystems from threshold fully homomorphic encryption[C]//Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I 38. Springer International Publishing, 2018: 565-596.
  9. PZK via OWF
  10. LSSS & MSP
  11. Threshold FHE
  12. Multi-key FHE

文章目录

  • Centralized ThFHE
    • Definition
    • ThFHE from Special LSSS
    • ThFHE from Shamir SSS
  • Decentralized ThFHE
  • Universal Thresholdizer
    • Definition
    • UT from PZK
    • UT from HS
  • Threshold Cryptosystems from UT
    • Function Secret Sharing
    • Threshold Signatures
    • Others

[BGG+18] 基于 门限同态加密,给出了构造 各种门限密码系统的一种通用方法。

Centralized ThFHE

Definition

[BGG+18] 首先给出了 threshold fully homomorphic encryption (ThFHE) for any class of access structures 的接口以及相关属性的定义。这个定义是中心化的,它有一个可信的 Setup 阶段,用于生成公私钥对以及分发私钥。

接口为:

在这里插入图片描述

我们要求 ThFHE 具有:紧凑性、计算正确性、语义安全性(IND-CPA)、模拟安全性(更强)

在这里插入图片描述

在这里插入图片描述

接下来,[BGG+18] 使用了 [AJL+12] 的噪声洪泛策略:为了防止 partial decryption 泄露参与者的 secret share 信息,他们根据 Smudging Lemma,对部分解密的结果(本来噪声的界 B B B)添加上超多项式大小的噪声(污染噪声的界 B s m B_{sm} Bsm 满足 B / B s m = n e g l ( λ ) B/B_{sm}=negl(\lambda) B/Bsm=negl(λ)),这使得包含私钥信息与否的两个分布的统计距离是可忽略的,从而证明模拟安全性。

[AJL+12] 使用的是形如 s = ∑ i = 1 N s i s = \sum_{i=1}^N s_i s=i=1Nsi 的 additive SSS。根据 FHE 的双线性(内积)解密特点,它在重构时的噪声累积是线性的,但是它只能处理 ( N − 1 ) (N-1) (N1)-out-of- N N N 访问结构。

[BGG+18] 考虑了任意的门限访问结构(threshold access structures , TAS

在这里插入图片描述

为了构造 ThFHE,首先需要一个底层的 FHE,要求它具有:紧凑性、正确性、安全性。[BGG+18] 特别地要求它的解密函数可以明确地分为线性部分以及非线性部分

在这里插入图片描述

ThFHE from Special LSSS

为了减小 LSSS 重建时的噪声累加,[BGG+18] 提出了一类特殊的访问结构,称之为 {0,1}-LSSS 访问结构族,它可以被一些重构系数要么是零要么是壹的 LSSS 所支持。

在这里插入图片描述

这个 {0,1}-LSSS 访问结构族包含了所有可以由 monotone Boolean formulas(MBFs)计算的那些访问结构(只含 AND 以及 OR 的布尔函数,不含 NOT)。特别地,TAS 也包含在内。也就是说 Special LSSS 依旧足够的富有,
TAS ⊆ MBF ⊆ { 0 , 1 } -LSSS \text{TAS} \subseteq \text{MBF} \subseteq \{0,1\}\text{-LSSS} TASMBF{0,1}-LSSS
LSSS 等价于 MSP,分发的 SS 都是由 secret 以及 random 组成的向量和某个 LSSS 矩阵相乘来获得的。各个参与者最终会拿到和 LSSS 矩阵的某些行相关的一个向量。[BGG+18] 将那些被 MSP 接受的那些行的 indices 称为 valid share set,将它们对应的参与者称为 valid party set,可对应地定义两者的 maximal invalid set 以及 minimal valid set

基于 Special FHE 以及 Special LSSS,构造 ThFHE 如下:

在这里插入图片描述

选择的参数应当满足: B + l ⋅ B s m ≤ q / 4 B+l\cdot B_{sm} \le q/4 B+lBsmq/4 以及 B / B s m = n e g l ( λ ) B/B_{sm} = negl(\lambda) B/Bsm=negl(λ),从而需要设置超多项式大小的洪泛噪声的上界 B s m B_{sm} Bsm 以及超多项式大小的底层 FHE 密文模数 q q q,安全假设是超多项式因子的近似格问题的困难性。可以证明构造出的 ThFHE 满足:紧凑性、计算正确性、语义安全性、模拟安全性。

ThFHE from Shamir SSS

使用 LSSS 的一个缺点就是它的 SS 规模太大了,对于 TAS 的描述需要 O ( N 5.2 ) O(N^{5.2}) O(N5.2) 大小的单调公式。而 Shamir SS 的规模是和 secret 大小相同的。但是如果直接使用 Shamir SSS,它的拉格朗日插值系数需要除法(在 Z q \mathbb Z_q Zq 上求逆元,范数往往很大),这导致噪声快速累计从而无法正确解密。

[BGG+18] 使用了 [Shoup00] 的 clearing out denominators(清理分母)策略:限制各个 party 的插值点为 x = 1 , 2 , ⋯ , N x=1,2,\cdots,N x=1,2,,N,特别地 dealer 插值点是 0 0 0,那么授权集 S ⊆ A t ∪ { 0 } S \subseteq \mathbb A_t \cup \{0\} SAt{0} 的 Lagrange coefficients 形如:
λ i j S = ∏ k ∈ S \ { j } ( j − k ) ∏ k ∈ S \ { j } ( i − k ) ∈ Q \lambda_{ij}^S = \frac{\prod_{k \in S\backslash\{j\}}(j-k)}{\prod_{k \in S\backslash\{j\}}(i-k)} \in \mathbb Q λijS=kS\{j}(ik)kS\{j}(jk)Q
它们被用于计算 s j = ∑ i ∈ S λ i j S ⋅ s i s_j = \sum_{i \in S} \lambda_{ij}^S \cdot s_i sj=iSλijSsi,其中 i ∈ S i \in S iS 是授权集内的参与者,而 j ∈ { 1 , 2 , ⋯ , N } \ S j \in \{1,2,\cdots,N\}\backslash S j{1,2,,N}\S 是其他参与者。容易看出这些插值系数的分母都整除 Δ = ( N ! ) 2 \Delta = (N!)^2 Δ=(N!)2,因此 Δ ⋅ λ i j S ∈ Z \Delta \cdot \lambda_{ij}^S \in \mathbb Z ΔλijSZ 是整数,并且上界是 ∣ Δ ⋅ λ i j S ∣ ≤ ( N ! ) 3 |\Delta \cdot \lambda_{ij}^S| \le (N!)^3 ∣ΔλijS(N!)3,它们都是低范数的整数

基于 Special FHE 以及 Shamir SSS,构造 ThFHE 如下:

在这里插入图片描述

选择的参数应当满足: B + ( N ! ) 3 ⋅ N ⋅ B s m ≤ q / 4 B+(N!)^3\cdot N\cdot B_{sm} \le q/4 B+(N!)3NBsmq/4 以及 B / B s m = n e g l ( λ ) B/B_{sm} = negl(\lambda) B/Bsm=negl(λ),这也需要超多项式近似因子的困难假设。可以证明构造出的 ThFHE 满足:计算正确性、语义安全性、模拟安全性。但是它不满足紧凑性,因为密文模数的规模和 N N N 有关,比特长度的增长因子是 O ( N log ⁡ N ) O(N \log N) O(NlogN)

Decentralized ThFHE

上述的 ThFHE 是中心化的,它在很多场景下有限制。除了是否存在可信方这个问题,还有参与者动态地加入和退出的情况,这导致 Setup 的频繁执行。

[BGG+18] 定义了一个去中心化的版本,记为 dThFHE,它没有 Setup 阶段。为了实现门限,他们在 Enc 算法中让各个参与者独立地生成 FHE 私钥及其 SS,然后再利用 PKE 封装这些 SS 到密文中。接口为:

在这里插入图片描述

类似的,定义它的一些属性:计算正确性、语义安全、模拟安全。由于 dThFHE 密文中需要包含给各个参与者的 SS 的 PKE 加密,因此密文规模一定会和 N N N 有关,因此定义了弱紧凑性。这些属性的定义我就不抄过来了,太繁琐。

构造如下:

在这里插入图片描述

它是一个满足各项属性的 dThFHE 方案。注意 TFHE.Setup 必须在每次 Enc 时独立地生成,因为它的私钥已经被分发在了密文中的 PKE 部分,不应该复用。所以,即使是单个参与者生成的不同密文,它们之间也无法相互作用。

不过,如果将底层的 FHE 替换为 [CM15] 提出的 Multi-Key FHE,那么获得的 MK dThFHE 是可以数据交互的。对于 ThFHE.Setup 生成独立的公私钥,它们的密文总可以先利用 masking system 转换成某组参与者对应的 expanded ciphertext,然后这些扩展的密文互相之间可以运算,最后解密时需要这组参与者中每个人的 FHE 私钥,这被从 PKE 密文中恢复出来。

Universal Thresholdizer

Definition

[BGG+18] 利用 ThFHE 给出了其他密码学原语的门限版本的通用构造:门限转化器(universal thresholdizer, UT

他们把 Setup 和 Enc 合并(使用 ThFHE 加密 secret 作为 pp 的一部分),把 Eval 和 PartDec 合并(各个参与者对这个 secret 密文做同一个运算,然后部分解密),并添加了 PartVerify 提供鲁棒性。确切地说,UT 提供了这样的一个功能:由 dealer 分发 ThFHE 私钥,同时 dealer 还用 ThFHE 加密某个秘密 x x x 获得 c t ( x ) ct(x) ct(x) 密文;接着对于公开的某个电路 C C C,各个 party 同态计算出 c t ( C ( x ) ) ct(C(x)) ct(C(x)),然后立即部分解密得到 p i p_i pi,它们是计算结果 C ( x ) C(x) C(x) 的一组 SS;最终这些 SS 可以合成为 C ( x ) C(x) C(x) 本身。即 UT 把关于秘密 x x x 的电路 C C C 给 “门限化” 了,只有满足访问结构的一组参与者同时计算 C ( x ) C(x) C(x) 以获得它的 SS,才能最终获得 C ( x ) C(x) C(x) 结果,这里的 x x x 是被 Setup 固定到 pp 里的,而公开的电路 C C C 可以随意变化。

UT 的接口为:

在这里插入图片描述

紧凑性、计算正确性、验证正确性:

在这里插入图片描述

鲁棒性:

在这里插入图片描述

模拟安全性:

在这里插入图片描述

UT from PZK

带预处理的 ZKP 系统(zero knowledge proof system with pre-processing, PZK)是 NIZK 的弱化,它的存在性只需要比 NIZK 所要求的弱得多的假设。PZK 只有最后一轮通信需要从 Prover 发往 Verifier,之前的所有通信轮次都可以被双方离线计算。

在这里插入图片描述

[BGG+18] 利用 ThFHE、PZK 系统(证明执行了正确的计算)、非交互的承诺(绑定 ThFHE 私钥的 SS),给出了 UT 的构造。

  • [LS90] 在 OWF 存在的假设下,给出了 NIZK with CRS 的构造,我们可以根据 LWE 问题来构造 OWF(虽然效率会很低)
  • [GHK+17] 基于(超多项式近似因子的) LWE 假设,构造了 non-interactive commitments,因此并不引入新的假设。

构造如下:

在这里插入图片描述

可以证明它满足 UT 所要求的各种属性。

UT from HS

同态签名(homomorphic signature, HS)允许在签名上执行同态运算,可用于证明 y y y(生成 y y y 的签名)确实是 x x x(已经被签名)在电路 C C C(公开的)上正确计算的。它的接口是:

在这里插入图片描述

HS 的功能是:

在这里插入图片描述

假设 SIS 困难,[GVW15] 给出了 (Leveled) FHS 的构造。因此利用 HS 提供 UT 的鲁棒性,也只需要格上困难问题,并没有引入新的假设。这篇文章我还没看,具体的构造,略。

HS 比 NIZK 更加紧凑,并且可以直接基于 LWE 构造出来,因此将它应用到 UT 的构造中替换 NIZK 以提供鲁棒性,在性能上会更好一些。容易把上述的 UT from PZK 修改为 UT from HS,略。

Threshold Cryptosystems from UT

[BGG+18] 利用 Universal Thresholdizer,将其他的多种密码原语转换成对应的门限版本。

Function Secret Sharing

[BGI15] 提出了函数秘密分享(Function Secret Sharing, FSS),类似于 SSS,但是分发的不再是消息,而是去分发函数。接口是:

在这里插入图片描述

紧凑性、计算正确性、安全性:

在这里插入图片描述

利用 UT 以及 PRF,可以给出 FSS 的构造。简记 U ( f , x ) \mathcal U(f,x) U(f,x) 是计算 f ( x ) f(x) f(x) 的通用电路(universal circuit),简记 U x \mathcal U_x Ux 是硬编码 x x x 的电路。

在这里插入图片描述

Threshold Signatures

门限签名是把 signing key 分发给多个签名者,只有满足某访问结构的签名者小组可以共同生成一个合法的签名。

在这里插入图片描述

紧凑性、计算正确性、部分验签正确性:

在这里插入图片描述

(弱)不可伪造性:

在这里插入图片描述

鲁棒性、匿名性:

在这里插入图片描述

使用 UT 将底层 Sign 门限化,

在这里插入图片描述

Others

[BGG+18] 还利用 UT 给出了:CCA Threshold PKECompact ThFHEThreshold Distributed PRFs

基本的思路都是:对于携带秘密的原始电路 C ( k , s ) C(k,s) C(k,s)将它的秘密 k k k 使用 UT.Setup 分发,然后使用 UT.Eval 对硬编码了字符串 s s s 的电路关于这些秘密的 SS 做运算,生成了运算结果的 SS,最后再用 UT.Combine 将它们组合成最终的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/6463.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YUM源仓库部署

一、YUM仓库服务 1、概述 2、准备安装源 软件仓库的提供方式 YUM软件仓库类型 仓库类型安装路径本地源baseurlfile://…ftp源baseurlftp://…在线源baseurlhttp://… baseurlhttps://… RPM软件包的来源 CentOS发布的RPM包集合第三方组织发布的RPM包集合用户自定义的RPM包…

mac nvm install node<version> error 404

mac m2芯片遇到的问题,估计m系列的应该也有这个问题,在这里记录一下 解决方案: ## 需要先处理一下兼容就OK了arch -x86_64 zsh nvm install returns curl: (22) The requested URL returned error: 404 Issue #2667 nvm-sh/nvm GitHub

ue引擎游戏开发笔记(29)——实现第三人称角色随手柄力度进行移动

1.需求分析 角色可以随手柄力量大小进行走路和跑步,不动时保持角色停顿。 2.操作实现 1.思路:通过动画蓝图和动画混合实现角色移动和输入的联系。 2.建立动画蓝图和混合空间: 3.在混合空间中对角色移动进行编辑: 4.在蓝图中设定变…

Nginx(搭建高可用集群)

文章目录 1.基本介绍1.在微服务架构中的位置2.配置前提3.主从模式架构图 2.启动主Nginx和两个Tomcat1.启动linux的tomcat2.启动win的tomcat3.启动主Nginx,进入安装目录 ./sbin/nginx -c nginx.conf4.windows访问 http://look.sunxiansheng.cn:7777/search/cal.jsp 3…

python邮件发送

第一种方式 一:发送的邮件要设置授权码,通过邮箱邮箱授权码去验证,让邮件服务器帮我们去转发邮件到要接收的邮件,代码中的授权码,是需要登录126邮箱(我这里是以126邮件发送的,具体的以自己为准…

Mybatis入门2

本文章是下面文章的扩充 Mybatis入门-CSDN博客文章浏览阅读432次,点赞6次,收藏10次。Mapper接口创建在java代码块中//dao层/*** 功能:查询所有用户数据* return*/https://blog.csdn.net/luosuss/article/details/138420052 映射配置文件 i…

【Python可视化】pyecharts

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。 需要安…

使用PyTorch从头实现Transformer

前言 本文使用Pytorch从头实现Transformer,原论文Attention is all you need paper,最佳解读博客,学习视频GitHub项目地址Some-Paper-CN。本项目是译者在学习长时间序列预测、CV、NLP和机器学习过程中精读的一些论文,并对其进行了…

node.js中path模块-路径处理,语法讲解

node中的path 模块是node.js的基础语法,实际开发中,我们通过使用 path 模块来得到绝对路径,避免因为相对路径带来的找不到资源的问题。 具体来说:Node.js 执行 JS 代码时,代码中的路径都是以终端所在文件夹出发查找相…

基于Springboot的滑雪场管理系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的滑雪场管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构&a…

搜好货API接口:快速获取商品列表的利器

搜好货商品列表API接口允许开发者根据关键字搜索并获取相关的商品列表数据。接口支持多种参数配置,可以根据需求灵活调整搜索条件和结果返回格式。 点击获取key和secret API接口请求说明 请求地址:https://api.souhaohuo.com/goods/search请求方法&…

速卖通关键字搜索API接口:快速获取商品列表的利器

速卖通关键字搜索API接口允许开发者根据用户输入的关键字进行商品搜索,并返回与之相关的商品列表。通过调用该接口,您可以快速获取与关键字匹配的商品信息,包括商品标题、价格、图片等,为您的电商业务提供有力支持。 三、API接口…

以信息挖掘为关键技术的智慧校园建设

随着信息技术的快速发展,数据信息资源以井喷的姿态涌现。数据信息的大量涌现给人们带来丰富的数据信息资源,但面对海量的信息资源时,加大了人们对有效信息资源获取的难度,数据挖掘技术正是这一背景下的产物,基于数据挖…

【Redis】Redis安装、配置、卸载使用可视化工具连接Redis

文章目录 1.前置条件2.安装Redis2.1下载Redis安装包并解压2.2在redis目录下执行make命令2.3修改Redis配置文件2.4启动Redis服务2.5连接redis服务 3.Redis卸载4.使用可视化工具连接Redis 1.前置条件 Linux操作系统需要要是64位.如果不清楚自己Linux上是多少位的,可以使用以下命…

C语言之详细讲解文件操作(抓住文件操作的奥秘)

什么是文件 与普通文件载体不同,文件是以硬盘为载体存储在计算机上的信息集合,文件可以是文本文档、图片、程序等等。文件通常具有点三个字母的文件扩展名,用于指示文件类型(例如,图片文件常常以KPEG格式保存并且文件…

一文了解复杂度

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、算法效率二、时间复杂度1.定义2.大O的渐进表示法3.一般常见复杂度4.实例 三、空间复杂度1.定义2.空间复杂度计算3.实例 总结 前言 计算复杂性理论&#xf…

Redis的持久化方法,各自优缺点,怎么选择?

持久化: redis基于内存是数据库,内容存到内存中,也可以存到硬盘中,这个过程就叫持久化。有两种方案,RDB和AOP两种。 RDB RDB持久化就是把当前进程数据生成快照保存到硬盘的过程RDB文件是⼀个压缩的二进制文件&#…

VisualGLM-6B微调(V100)

Visualglm-6b-CSDN博客文章浏览阅读1.3k次。【官方教程】XrayGLM微调实践,(加强后的GPT-3.5)能力媲美4.0,无次数限制。_visualglm-6bhttps://blog.csdn.net/u012193416/article/details/131074962?ops_request_misc%257B%2522req…

【经典论文阅读1】FM模型——搜推算法里的瑞士军刀

全文由『说文科技』原创出品,文章同步更新于公众号『说文科技』。版权所有,翻版必究。 FM模型发表于2010年,它灵活好用且易部署。作者行文极其流畅,作者首先对要处理的问题进行介绍,接着作者提出FM模型,这…

Vue单页面应用和多页面应用的区别

概念: SPA单页面应用(SinglePage Web Application),指只有一个主页面的应用,一开始只需要加载一次js、css等相关资源。所有内容都包含在主页面,对每一个功能模块组件化。单页应用跳转,就是切换…