OpenCV 功能函数介绍

一, 二值化函数

功能:

用于对图像进行二值化处理

参数:

cv2.threshold(输入你的图像所对应的灰度图,

                      阈值:是浮点还是整数取决予图像的数据类型

                      最大值;高于阈值的像素值,

                      阈值类型:cv2.THRESH_BINARY、cv2.THRESH_BINARY_INV、                 cv2.THRESH_TRUNC、cv2.THRESH_TOZERO 和 cv2.THRESH_TOZERO_INV

                                  )

返回值:

二值化的返回值有2个

1:实际使用的阈值

2:二值化的图像

注意:调用二值化函数使用的图像一定要是灰度化后的图像

应用:

import cv2img = cv2.imread("./women.png.")img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)ret, img_threshold = cv2.threshold(img_gray,120,255,cv2.THRESH_BINARY)print(ret)cv2.imshow("img",img)
cv2.imshow("img_gary",img_gray)
cv2.imshow("img_threshold",img_threshold)
cv2.waitKey(0)

可以通过修改阈值呈现不同的效果

1.使用cv2.THRESH_BINARY

2.使用cv2.THRESH_BINARY_INV

3.使用THRESH_TRUNC

二.自适应二值化函数  功能、参数、返回值、应用

功能:

与二值化算法相比,自适应二值化更加适合用在明暗分布不均的图片

参数:

cv2.adaptiveThreshold(输入你的图像所对应的灰度图,

                                       最大值,#通常为255

                                       自适应方法,#cv2.ADAPTIVE_THRESH_MEAN_C   |                                                                            cv2.ADAPTIVE_THRESH_GAUSSIAN_C

                                       二值化类型,

                                       核的大小:最好是奇数

                                       最终的阈值:从计算出的平均值或加权和中减去的常数

返回值:

自适应二值化的图像

应用:

import cv2img = cv2.imread("./women.png.")img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)img_adapt = cv2.adaptiveThreshold(img_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,3)cv2.imshow("img",img)
cv2.imshow("img_gary",img_gray)
cv2.imshow("img_threshold",img_adapt)
cv2.waitKey(0)

可以通过修改阈值和自适应方法呈现不同的效果

1.cv2.ADAPTIVE_THRESH_GAUSSIAN_C

2.cv2.ADAPTIVE_THRESH_MEAN_C

三,腐蚀函数

功能:

将二值化图像中的白色部分尽可能的压缩

参数:

cv2.erode(读取图片,

                   kernel: 结构元素,核,

                   iterations: 迭代次数,次数越多效果越明显

                    )

kernel:

cv2.getStructuringElement(cv2.MORPH_ELLIPSE,

                                                (3, 3)大小

)

返回值:

腐蚀后的图像

应用:

import cv2img = cv2.imread("./123.png.")kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))img_erode = cv2.erode(img,kernal)cv2.imshow("img",img)
cv2.imshow("img_gary",img_erode)
cv2.waitKey(0)

四,膨胀函数

功能:

将二值化图像中的白色部分尽可能的扩张

参数:

cv2.dilate(

                        读取图片,

                   kernel: 结构元素,核,

                   iterations: 迭代次数,次数越多效果越明显

)

返回值:

膨胀后的图片

应用:

import cv2img = cv2.imread("./123.png.")kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))img_dilate = cv2.dilate(img,kernal)cv2.imshow("img",img)
cv2.imshow("img_gary",img_dilate)
cv2.waitKey(0)

五,仿射变换函数

 功能:

用于对图像进行仿射变换(Affine Transformation)的函数,仿射变换包括平移、旋转、缩放以及剪切等操作。

参数:

cv2.warpAffine(输入的图像,

                        变换矩阵,:通过其他函数(如 cv2.getRotationMatrix2D())计算得到的,用于描述仿射变换

                        输出图像的大小,

                        插值方法(默认为线性),:cv2.INTER_LINEAR(线性插值)、cv2.INTER_NEAREST(最近邻插值)、cv2.INTER_CUBIC(三次样条插值)

                        边缘填充方法,:cv2.BORDER_CONSTANT(常量填充)、cv2.BORDER_REFLECT(反射)、cv2.BORDER_REFLECT_101(反射101)

                        边界颜色 :borderMode 为 cv2.BORDER_CONSTANT

)

cv2.getRotationMatrix2D(center:旋转的中心点, angle:旋转角度, scale:缩放因子)

返回值:

输出图像

应用:

import cv2img = cv2.imread("./women.png")M = cv2.getRotationMatrix2D((img.shape[1]/2,img.shape[0]/2),45,0.5)
img_warp = cv2.warpAffine(img,M,(700,700),flags=cv2.INTER_LINEAR,borderMode=cv2.BORDER_WRAP)cv2.imshow("img",img)
cv2.imshow("img_gary",img_warp)
cv2.waitKey(0)

修改缩放因子

六,透视变换函数

功能:

用于对图像进行透视变换的函数

而透视变换是把一个图像投影到一个新的视平面的过程

参数:

cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)

cv2.warpPerspective(输入图像,

                                    透视变换矩阵,

                                    输出图像的尺寸,

                                    输出图像,这是一个可选参数。

                                     插值方法,:cv2.INTER_LINEAR(线性插值)、cv2.INTER_NEAREST(最近邻插值)、cv2.INTER_CUBIC(三次样条插值)

返回值:

图像

应用:

import cv2
import numpy as npimg = cv2.imread("./223.png")points1 = np.array([[80, 300], [950, 50], [150, 620], [1060,400]],dtype=np.float32)points2 = np.array([[0, 0], [img.shape[1], 0], [0, img.shape[0]], [img.shape[1], img.shape[0]]],dtype=np.float32)
M = cv2.getPerspectiveTransform(points1, points2)img_warp = cv2.warpPerspective(img, M,(img.shape[1], img.shape[0]))cv2.imshow("img",img)
cv2.imshow("img1",img_warp)
cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62940.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python】使用Selenium的find_element模块获取网页上的大段文字和表格的方法(建议收藏!)

发现了一个使用Selenium的find_element模块,快速获取文字和表格的方法,很实在,以后爬网的时候,就不用beautifulSoup 和 pandas的read_html 混起来用了! 文字部分:实现网络节点下,某个节点下的其…

APP渗透测试记录(一、Android应用基本构造)

Android应用基本构造 雷电模拟机进入 adb shell# 如果不是root权限 su一下 su 1.了解APK文件 安卓应用的扩展名为.apk(Android Application Package),它是一个包含多个文件和文件夹的数据存档文件。 1.1 apk文件解压后的目录结构 AndroidManifest.xml:包含应用的大部分…

【AI知识】有监督学习之回归任务(附线性回归代码及可视化)

1. 回归的基本概念 在机器学习的有监督学习中,回归(Regression)是一种常见的任务,它的目标是通过观察数据来建立一个模型,用一个或多个自变量来预测因变量的值。 回归分析通常用于: a.预测,基于…

fastadmin批量压缩下载远程视频文件

后端代码 // 批量下载并压缩 public function downloadAll(){$ids input(ids);$row $this->model->where(id, in, $ids)->field(id,title,video_url)->select();if (!$row) {$this->error(记录不存在);}$arr [];$tempFiles []; // 用来存储临时下载的视频文…

边缘计算+人工智能:让设备更聪明的秘密

引言:日常生活中的“智能”设备 你是否发现,身边的设备正变得越来越“聪明”? 早上醒来时,智能音箱已经根据你的日程播放舒缓音乐;走进厨房,智能冰箱提醒你今天的食材库存;而在城市道路上&…

JVM 双亲委派模型以及垃圾回收机制

目录 1. JVM 内存区域划分 2. JVM 中类加载的过程 1) 类加载的基本流程 2) 双亲委派模型 3. JVM 中垃圾回收机制 1) 找到垃圾 a) 引用计数 b) 可达性分析 2) 释放垃圾 1. JVM 内存区域划分 一个运行起来的 Java 进程,其实就是一个 JVM 虚拟机。 而进程是…

ansible自动化运维(四)jinjia2模板

Jinjia2模板 前面说到playbook组成的时候,有介绍到template模块,而template模块对模板文件进行渲染时,使用的就是jinja2模板引擎,jinja2本身就是基于python的模板引擎,所以下面先来了解一下jinjia2模板的一些用法 基…

通过k-means对相似度较高的语句进行分类

本文介绍了如何使用K-Means算法对相似度较高的语句进行分类,并附上java案例代码 import java.util.ArrayList; import java.util.List; import java.util.Random;public class KMeansTextClustering {public static void main(String[] args) {// 初始化语句数据集…

Oracle 19c rac 补丁升级,从19.7 to19.22-集群

1. 补丁包概述 数据库环境 角色 数据库 IP地址 数据库版本 主机名 数据库名称 源端 RAC 172.30.21.166/167 19.7 hfcwdb66/hfcwdb67 hfdb 将以下补丁包上传到/soft下 上传到两个节点的soft目录下:p6880880_190000_Linux-x86-64.zip (更新o…

Windows安装Jira

下载 Download Jira Data Center | Atlassian https://product-downloads.atlassian.com/software/jira/downloads/atlassian-jira-software-10.3.0-x64.exe 以管理员身份安装,否则弹出以下提醒 创建和配置MySQL数据库:参照 Connecting Jira applicat…

uniapp - 微信小程序

一、background-image 大图不显示的问题 解决方法: 1、使用网络地址;2、使用 base64 urlTobase64(filePath) {// #ifdef MP-WEIXINlet img ${filePath},imgBase64 wx.getFileSystemManager().readFileSync(img, "base64"),base64Url data:…

DETR: End-to-End Object Detection with Transformers论文学习

论文地址:https://arxiv.org/pdf/2005.12872 代码地址:https://github.com/facebookresearch/detr 相关学习视频:https://space.bilibili.com/94779326/lists?sid1531941 标题前言: DETR 是 Facebook 团队于 2020 年提出的基于…

LeetCode 24反转链表

单链表反转:详细解析与代码实现 在数据结构的学习过程中,链表是一个非常重要且有趣的部分,而单链表的反转操作更是常考的基础知识点。今天就来和大家详细讲讲如何实现单链表的反转,并通过代码示例来加深理解呀。 题目 给定单链…

Redis学习笔记之——学习计划

Redis——Remote Dictionary Server,开源、基于内存、速度快、key-value... Redis做为一个高性能的键值存储系统,广泛应用于缓存、会话存储、分布式锁以及其他需要快速访问的数据场景中。熟悉掌握redis,似乎已成为广大码农们必备的一项技能。…

网络安全教学博客(二):常见网络安全威胁剖析

在上一篇博客中,我们了解了网络安全的基础概念和重要性。今天,让我们深入探讨一下常见的网络安全威胁,以便我们能够更好地识别和防范它们。 恶意软件(Malware) 病毒(Virus):病毒是一…

Vue3状态管理:Pinia架构设计分析

Vue3状态管理:Pinia架构设计分析 介绍 在Vue.js开发中,状态管理是一个非常重要的部分。随着Vue3的发布,Pinia作为一种新的状态管理架构也相继问世。本文将对Pinia架构进行深入分析,帮助读者了解其设计原理、特点以及在实际项目中的应用。 架构…

【IDEA】启动报错

今天启动IDEA报错 报错信息: Cannot connect to already running IDE instance. Exception: Process 5,444 is still running 打开任务管理器,关掉进程ID5444的任务

socket编程UDP-实现停等机制(接收确认、超时重传)

在下面博客中,我介绍了利用UDP模拟TCP连接、按数据包发送文件的过程,并附上完整源码。 socket编程UDP-文件传输&模拟TCP建立连接脱离连接(进阶篇)_udp socket发送-CSDN博客 下面博客实现的是滑动窗口机制: sock…

uniapp小程序的锚点定位(将页面滚动到目标位置)

小程序中,a页面跳转到b页面,跳转后滚动定位到b页面的特定位置。 1.uni.pageScrollTo传递一个scrollTop参数可以滚动到特定位置。2.可以通过 uni.createSelectorQuery()等获取定位元素的位置信息。3.uni.getSystemInfoSync()获取设备的导航栏和状态栏高度…

php基础:命名空间

1.PHP 命名空间可以解决以下两类问题: 1.用户编写的代码与PHP内部的类/函数/常量或第三方类/函数/常量之间的名字冲突。 2.为很长的标识符名称(通常是为了缓解第一类问题而定义的)创建一个别名(或简短)的名称,以提高源代码的可读…