【AI知识】有监督学习之回归任务(附线性回归代码及可视化)

1. 回归的基本概念
在机器学习的有监督学习中,回归(Regression)是一种常见的任务,它的目标是通过观察数据来建立一个模型,用一个或多个自变量来预测因变量的值。

回归分析通常用于: a.预测,基于已有数据,预测未知的数据,b. 解释关系,分析自变量与因变量之间的关系和影响。

回归任务举例: 根据房屋的面积、位置、房龄等信息,预测房屋的市场价格。

回归模型的类型: 线性回归(Linear Regression)、 非线性回归(Nonlinear Regression)、岭回归(Ridge Regression)等

2. 线性回归(Linear Regression)

线性回归是最基础的回归方法,它假设自变量和因变量之间存在线性关系。常见的线性回归模型有:

在这里插入图片描述
3. 非线性回归(Nonlinear Regression)

当自变量和因变量之间的关系不再是线性时,可使用非线性回归,适用于那些数据呈现曲线而不是直线趋势的情况。这种回归模型包含了更复杂的数学关系,例如:

在这里插入图片描述
4. 回归任务的评估指标

回归模型的评估指标用来衡量模型的预测能力和拟合程度。常见的评估指标有:

在这里插入图片描述

5. 使用 scikit-learn 库进行单变量线性回归分析

# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 生成模拟数据
np.random.seed(42)  # 为了可复现性
X = 2 * np.random.rand(100, 1)  # 生成100个随机自变量
Y = 4 + 3 * X + np.random.randn(100, 1)  # 生成因变量(线性关系加上噪声)# 可视化数据
plt.scatter(X, Y, color='blue', label='Data Points')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Generated Data')
plt.show()

在这里插入图片描述

# 数据集划分:80%训练,20%测试
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)# 创建线性回归模型
model = LinearRegression()# 训练模型
model.fit(X_train, Y_train)# 进行预测
Y_pred = model.predict(X_test)# 打印回归系数和截距
print(f"回归系数 (β1): {model.coef_[0]}")
print(f"截距 (β0): {model.intercept_}")
#回归系数 (β1): [2.79932366]
#截距 (β0): [4.14291332]

# 评估模型
mse = mean_squared_error(Y_test, Y_pred)
r2 = r2_score(Y_test, Y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")
#均方误差 (MSE): 0.6536995137170021
#决定系数 (R²): 0.8072059636181392# 可视化结果
plt.scatter(X_test, Y_test, color='blue', label='True Data')
plt.plot(X_test, Y_pred, color='red', label='Regression Line')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Linear Regression Model')
plt.legend()
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

边缘计算+人工智能:让设备更聪明的秘密

引言:日常生活中的“智能”设备 你是否发现,身边的设备正变得越来越“聪明”? 早上醒来时,智能音箱已经根据你的日程播放舒缓音乐;走进厨房,智能冰箱提醒你今天的食材库存;而在城市道路上&…

JVM 双亲委派模型以及垃圾回收机制

目录 1. JVM 内存区域划分 2. JVM 中类加载的过程 1) 类加载的基本流程 2) 双亲委派模型 3. JVM 中垃圾回收机制 1) 找到垃圾 a) 引用计数 b) 可达性分析 2) 释放垃圾 1. JVM 内存区域划分 一个运行起来的 Java 进程,其实就是一个 JVM 虚拟机。 而进程是…

ansible自动化运维(四)jinjia2模板

Jinjia2模板 前面说到playbook组成的时候,有介绍到template模块,而template模块对模板文件进行渲染时,使用的就是jinja2模板引擎,jinja2本身就是基于python的模板引擎,所以下面先来了解一下jinjia2模板的一些用法 基…

Windows安装Jira

下载 Download Jira Data Center | Atlassian https://product-downloads.atlassian.com/software/jira/downloads/atlassian-jira-software-10.3.0-x64.exe 以管理员身份安装,否则弹出以下提醒 创建和配置MySQL数据库:参照 Connecting Jira applicat…

uniapp - 微信小程序

一、background-image 大图不显示的问题 解决方法: 1、使用网络地址;2、使用 base64 urlTobase64(filePath) {// #ifdef MP-WEIXINlet img ${filePath},imgBase64 wx.getFileSystemManager().readFileSync(img, "base64"),base64Url data:…

DETR: End-to-End Object Detection with Transformers论文学习

论文地址:https://arxiv.org/pdf/2005.12872 代码地址:https://github.com/facebookresearch/detr 相关学习视频:https://space.bilibili.com/94779326/lists?sid1531941 标题前言: DETR 是 Facebook 团队于 2020 年提出的基于…

Vue3状态管理:Pinia架构设计分析

Vue3状态管理:Pinia架构设计分析 介绍 在Vue.js开发中,状态管理是一个非常重要的部分。随着Vue3的发布,Pinia作为一种新的状态管理架构也相继问世。本文将对Pinia架构进行深入分析,帮助读者了解其设计原理、特点以及在实际项目中的应用。 架构…

【IDEA】启动报错

今天启动IDEA报错 报错信息: Cannot connect to already running IDE instance. Exception: Process 5,444 is still running 打开任务管理器,关掉进程ID5444的任务

socket编程UDP-实现停等机制(接收确认、超时重传)

在下面博客中,我介绍了利用UDP模拟TCP连接、按数据包发送文件的过程,并附上完整源码。 socket编程UDP-文件传输&模拟TCP建立连接脱离连接(进阶篇)_udp socket发送-CSDN博客 下面博客实现的是滑动窗口机制: sock…

python xpath解析笔记

与bs4的区别 bs4有很多属性和方法,而xpath只有一个方法,是通过不同的xpath表达式实现很多功能的。 html例子 定位 tree.xpath(‘/html/head/title’) 返回列表。 开头的斜杠表示从根节点遍历。 中间的斜杠表示层级。(相当于bs4中的>…

Q学习(Q-Learning)详解

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

树状数组详解

概述 树状数组(Binary Indexed Tree,简称BIT),是一种数据结构,用于处理区间查询和更新问题。它是一种可以高效地在对数级别时间复杂度内进行单点更新和区间查询的数据结构。树状数组通常用于解决以下两类问题&#xf…

freeswitch(开启支持MCU视频会议,使用mod_av模块)

亲测版本centos 7.9系统–》 freeswitch1.10.9 本人freeswitch安装路径(根据自己的路径进入) /usr/local/freeswitch/etc/freeswitch场景说明: 有些场景想使用视频会议MCU融合画面进行开会使用方法: 第一步:下载插件 yum install -y epel-release yum install

【大数据技术基础】【记录Ubuntu 16.04升级到18.04】Ubuntu的一个版本升级到另一个版本

在 Ubuntu 操作系统中进行软件更新和系统升级 Ubuntu Kylin 16.04 LTS 系统进行系统升级到 Ubuntu 18.04.6 LTS 版本 升级提示:系统弹出提示框,告知用户有新版本的 Ubuntu 可用,询问用户是否想要升级。 认证窗口:显示了一个认证…

这是一个vue3 + scss的数字滚动效果

介绍: 当数字变化时&#xff0c;只改变变化的数字位&#xff0c;其余的不变&#xff0c;可以递增、递减、骤变、负数也可以&#xff0c;但是样式要根据具体的项目需求去改&#xff1b; 效果1、增加数字&#xff1a; 效果2、减少数字&#xff1a; 使用方法&#xff1a; <te…

TortoiseGit的下载、安装和配置

一、TortoiseGit的简介 tortoiseGit是一个开放的git版本控制系统的源客户端&#xff0c;支持Winxp/vista/win7.该软件功能和git一样 不同的是&#xff1a;git是命令行操作模式&#xff0c;tortoiseGit界面化操作模式&#xff0c;不用记git相关命令就可以直接操作&#xff0c;读…

最新版Chrome浏览器加载ActiveX控件之Adobe PDF阅读器控件

背景 Adobe PDF阅读器控件是一个ActiveX控件&#xff0c;用于在Windows平台上显示和操作PDF文件。它提供了一系列方法和属性&#xff0c;可以实现对PDF文件的加载、显示、搜索、打印、保存等操作。 allWebPlugin中间件是一款为用户提供安全、可靠、便捷的浏览器插件服务的中间件…

源码分析之Openlayers中的控件篇Control基类介绍

概述 Openlayers 中内置了9类控件&#xff0c;这9类控件都是基于Control类&#xff0c;而Control类则是继承于BaseObject类&#xff0c;如下图所示&#xff1a; 如上&#xff0c;这9类控件分别是&#xff1a; Attribution&#xff1a;属性控件FullScreen:全屏控件MousePositi…

第P2周:Pytorch实现CIFAR10彩色图片识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 目标 实现CIFAR-10的彩色图片识别实现比P1周更复杂一点的CNN网络 具体实现 &#xff08;一&#xff09;环境 语言环境&#xff1a;Python 3.10 编 译 器: …

2024年食堂采购系统源码技术趋势:如何开发智能的供应链管理APP

本篇文章&#xff0c;小编将与大家一同探讨2024年食堂采购系统的技术趋势&#xff0c;并提供开发更智能的供应链管理APP的策略。 一、2024年食堂采购系统的技术趋势 1.人工智能与机器学习的深度应用 在2024年&#xff0c;AI和机器学习在食堂采购系统中的应用将更加普遍。这些…