【AI知识】有监督学习之回归任务(附线性回归代码及可视化)

1. 回归的基本概念
在机器学习的有监督学习中,回归(Regression)是一种常见的任务,它的目标是通过观察数据来建立一个模型,用一个或多个自变量来预测因变量的值。

回归分析通常用于: a.预测,基于已有数据,预测未知的数据,b. 解释关系,分析自变量与因变量之间的关系和影响。

回归任务举例: 根据房屋的面积、位置、房龄等信息,预测房屋的市场价格。

回归模型的类型: 线性回归(Linear Regression)、 非线性回归(Nonlinear Regression)、岭回归(Ridge Regression)等

2. 线性回归(Linear Regression)

线性回归是最基础的回归方法,它假设自变量和因变量之间存在线性关系。常见的线性回归模型有:

在这里插入图片描述
3. 非线性回归(Nonlinear Regression)

当自变量和因变量之间的关系不再是线性时,可使用非线性回归,适用于那些数据呈现曲线而不是直线趋势的情况。这种回归模型包含了更复杂的数学关系,例如:

在这里插入图片描述
4. 回归任务的评估指标

回归模型的评估指标用来衡量模型的预测能力和拟合程度。常见的评估指标有:

在这里插入图片描述

5. 使用 scikit-learn 库进行单变量线性回归分析

# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 生成模拟数据
np.random.seed(42)  # 为了可复现性
X = 2 * np.random.rand(100, 1)  # 生成100个随机自变量
Y = 4 + 3 * X + np.random.randn(100, 1)  # 生成因变量(线性关系加上噪声)# 可视化数据
plt.scatter(X, Y, color='blue', label='Data Points')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Generated Data')
plt.show()

在这里插入图片描述

# 数据集划分:80%训练,20%测试
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)# 创建线性回归模型
model = LinearRegression()# 训练模型
model.fit(X_train, Y_train)# 进行预测
Y_pred = model.predict(X_test)# 打印回归系数和截距
print(f"回归系数 (β1): {model.coef_[0]}")
print(f"截距 (β0): {model.intercept_}")
#回归系数 (β1): [2.79932366]
#截距 (β0): [4.14291332]

# 评估模型
mse = mean_squared_error(Y_test, Y_pred)
r2 = r2_score(Y_test, Y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")
#均方误差 (MSE): 0.6536995137170021
#决定系数 (R²): 0.8072059636181392# 可视化结果
plt.scatter(X_test, Y_test, color='blue', label='True Data')
plt.plot(X_test, Y_pred, color='red', label='Regression Line')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Linear Regression Model')
plt.legend()
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

fastadmin批量压缩下载远程视频文件

后端代码 // 批量下载并压缩 public function downloadAll(){$ids input(ids);$row $this->model->where(id, in, $ids)->field(id,title,video_url)->select();if (!$row) {$this->error(记录不存在);}$arr [];$tempFiles []; // 用来存储临时下载的视频文…

边缘计算+人工智能:让设备更聪明的秘密

引言:日常生活中的“智能”设备 你是否发现,身边的设备正变得越来越“聪明”? 早上醒来时,智能音箱已经根据你的日程播放舒缓音乐;走进厨房,智能冰箱提醒你今天的食材库存;而在城市道路上&…

JVM 双亲委派模型以及垃圾回收机制

目录 1. JVM 内存区域划分 2. JVM 中类加载的过程 1) 类加载的基本流程 2) 双亲委派模型 3. JVM 中垃圾回收机制 1) 找到垃圾 a) 引用计数 b) 可达性分析 2) 释放垃圾 1. JVM 内存区域划分 一个运行起来的 Java 进程,其实就是一个 JVM 虚拟机。 而进程是…

ansible自动化运维(四)jinjia2模板

Jinjia2模板 前面说到playbook组成的时候,有介绍到template模块,而template模块对模板文件进行渲染时,使用的就是jinja2模板引擎,jinja2本身就是基于python的模板引擎,所以下面先来了解一下jinjia2模板的一些用法 基…

通过k-means对相似度较高的语句进行分类

本文介绍了如何使用K-Means算法对相似度较高的语句进行分类,并附上java案例代码 import java.util.ArrayList; import java.util.List; import java.util.Random;public class KMeansTextClustering {public static void main(String[] args) {// 初始化语句数据集…

Oracle 19c rac 补丁升级,从19.7 to19.22-集群

1. 补丁包概述 数据库环境 角色 数据库 IP地址 数据库版本 主机名 数据库名称 源端 RAC 172.30.21.166/167 19.7 hfcwdb66/hfcwdb67 hfdb 将以下补丁包上传到/soft下 上传到两个节点的soft目录下:p6880880_190000_Linux-x86-64.zip (更新o…

Windows安装Jira

下载 Download Jira Data Center | Atlassian https://product-downloads.atlassian.com/software/jira/downloads/atlassian-jira-software-10.3.0-x64.exe 以管理员身份安装,否则弹出以下提醒 创建和配置MySQL数据库:参照 Connecting Jira applicat…

uniapp - 微信小程序

一、background-image 大图不显示的问题 解决方法: 1、使用网络地址;2、使用 base64 urlTobase64(filePath) {// #ifdef MP-WEIXINlet img ${filePath},imgBase64 wx.getFileSystemManager().readFileSync(img, "base64"),base64Url data:…

DETR: End-to-End Object Detection with Transformers论文学习

论文地址:https://arxiv.org/pdf/2005.12872 代码地址:https://github.com/facebookresearch/detr 相关学习视频:https://space.bilibili.com/94779326/lists?sid1531941 标题前言: DETR 是 Facebook 团队于 2020 年提出的基于…

LeetCode 24反转链表

单链表反转:详细解析与代码实现 在数据结构的学习过程中,链表是一个非常重要且有趣的部分,而单链表的反转操作更是常考的基础知识点。今天就来和大家详细讲讲如何实现单链表的反转,并通过代码示例来加深理解呀。 题目 给定单链…

Redis学习笔记之——学习计划

Redis——Remote Dictionary Server,开源、基于内存、速度快、key-value... Redis做为一个高性能的键值存储系统,广泛应用于缓存、会话存储、分布式锁以及其他需要快速访问的数据场景中。熟悉掌握redis,似乎已成为广大码农们必备的一项技能。…

网络安全教学博客(二):常见网络安全威胁剖析

在上一篇博客中,我们了解了网络安全的基础概念和重要性。今天,让我们深入探讨一下常见的网络安全威胁,以便我们能够更好地识别和防范它们。 恶意软件(Malware) 病毒(Virus):病毒是一…

Vue3状态管理:Pinia架构设计分析

Vue3状态管理:Pinia架构设计分析 介绍 在Vue.js开发中,状态管理是一个非常重要的部分。随着Vue3的发布,Pinia作为一种新的状态管理架构也相继问世。本文将对Pinia架构进行深入分析,帮助读者了解其设计原理、特点以及在实际项目中的应用。 架构…

【IDEA】启动报错

今天启动IDEA报错 报错信息: Cannot connect to already running IDE instance. Exception: Process 5,444 is still running 打开任务管理器,关掉进程ID5444的任务

socket编程UDP-实现停等机制(接收确认、超时重传)

在下面博客中,我介绍了利用UDP模拟TCP连接、按数据包发送文件的过程,并附上完整源码。 socket编程UDP-文件传输&模拟TCP建立连接脱离连接(进阶篇)_udp socket发送-CSDN博客 下面博客实现的是滑动窗口机制: sock…

uniapp小程序的锚点定位(将页面滚动到目标位置)

小程序中,a页面跳转到b页面,跳转后滚动定位到b页面的特定位置。 1.uni.pageScrollTo传递一个scrollTop参数可以滚动到特定位置。2.可以通过 uni.createSelectorQuery()等获取定位元素的位置信息。3.uni.getSystemInfoSync()获取设备的导航栏和状态栏高度…

php基础:命名空间

1.PHP 命名空间可以解决以下两类问题: 1.用户编写的代码与PHP内部的类/函数/常量或第三方类/函数/常量之间的名字冲突。 2.为很长的标识符名称(通常是为了缓解第一类问题而定义的)创建一个别名(或简短)的名称,以提高源代码的可读…

分布式 CAP理论 总结

前言 相关系列 《分布式 & 目录》《分布式 & CAP理论 & 总结》《分布式 & CAP理论 & 问题》 分布式 分布式的核心是将大型业务拆解成多个子业务以使之在不同的机器上执行。分布式是用于解决单个物理机容量&性能瓶颈问题而采用的优化手段&#xf…

python xpath解析笔记

与bs4的区别 bs4有很多属性和方法,而xpath只有一个方法,是通过不同的xpath表达式实现很多功能的。 html例子 定位 tree.xpath(‘/html/head/title’) 返回列表。 开头的斜杠表示从根节点遍历。 中间的斜杠表示层级。(相当于bs4中的>…

Q学习(Q-Learning)详解

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…