106.【C语言】数据结构之二叉树的三种递归遍历方式

目录

1.知识回顾

2.分析二叉树的三种遍历方式

1.总览

2.前序遍历

3.中序遍历

4.后序遍历

5.层序遍历

3.代码实现

1.准备工作

2.前序遍历函数PreOrder

测试结果

3.中序遍历函数InOrder

测试结果

4.后序遍历函数PostOrder

测试结果

4.底层分析


1.知识回顾

在99.【C语言】数据结构之二叉树的基本知识文章中提到:任何一棵树都由两部分构成:根和子树,子树又由根和子树构成

因此看见二叉树要本能地做出反应:拆成三部分:根,左子树和右子树,直到遇到空树(叶节点)则停止拆分

 7447cca743864287a76ebeab89df1c1c.png

2.分析二叉树的三种遍历方式

1.总览

前序遍历

中序遍历

后序遍历

层序遍历(要借助队列,本文暂时不讲其代码实现)

e7d5951f3821482fa7550385986249c9.png

下面三种遍历方式都基于上面这张图分析

2.前序遍历(也称先序遍历)

定义:按根-->左子树-->右子树的顺序遍历

遍历顺序:

1(根)-->2(根)-->3(根)-->NULL(3的左子树)-->NULL(3的右子树)-->NULL(2的右子树)-->4(根)-->5(根)-->NULL(5的左子树)-->NULL(5的右子树)-->6(根)-->NULL(6的左子树)-->NULL(6的右子树)

bd1f91734a014b38b19d7b5d86c7676d.png

备注:图中每个方框都代表一棵子树

3.中序遍历

定义:按左子树-->根-->右子树的顺序遍历

这里有一个易错点也是关键点:中序遍历中第一个访问的一定为空!!!!

虽然1的左节点为2,但不能访问2(即不可访问root->data),按中序遍历的定义,要先访问2的左子树;虽然2的左节点为3,但不能访问3,按中序遍历的定义,先访问3左子树;3的左子树为NULL,其没有子树,因此开始访问根(即3),再访问根的右子树NULL,再回归......

左子树访问完才能访问根

遍历顺序:NULL(3的左子树)-->3-->NULL(3的右子树)-->2(根)-->NULL(2的右子树)-->1(根)-->NULL(5的左子树)-->5(根)-->NULL(5的右子树)-->4(根)-->NULL(6的左子树)-->6(根)-->NULL(6的右子树)

dd6d7b25fa2e4f61b4164b0ffe7214d8.png

备注:图中每个方框都代表一棵子树  

4.后序遍历

定义:按左子树-->右子树-->根的顺序遍历

和中序遍历一样,也有一个易错点也是关键点:和中序遍历一样,先访问左子树,因此后序遍历中第一个访问的也一定为空!!!!

遍历顺序:NULL(3的左子树)-->NULL(3的右子树)-->3(根)-->NULL(2的右子树)-->2(根)-->NULL(5的左子树)-->NULL(5的右子树)-->5(根)-->NULL(6的左子树)-->NULL(6的右子树)-->6(根)-->4(根)-->1(根)

3c55dfd99ac743d0801bd39f6d065fec.png

备注:图中每个方框都代表一棵子树   

5.层序遍历

定义:按层的方式遍历(,设n为树的深度,h==1-->h==2-->h==3-->...-->h==n)

遍历顺序:1-->2-->4-->3-->5-->6

h==1为第一层,只有1;h==2为第二层,有2和4;h==3为第三层,有3,5和6;

3.代码实现

1.准备工作

用结构体去定义一个二叉树,其成员变量有:数值域data,结构体指针变量left和right,分别指向其对应的左子树和右子树(写入Tree.h)

typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;

定义完二叉树后还要开辟空间函数BuyNode和建立树的函数(写入Tree.c)

BTNode* BuyNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}

建立指定的二叉树,见下图

 e7d5951f3821482fa7550385986249c9.png

BTNode* CreateTree()
{//写入各个节点的数据域BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);//设置left和right指针node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;//返回根节点的指针return node1;
}

递归返回的条件:遇到空树(NULL)

2.前序遍历函数PreOrder

按根-->左子树-->右子树的顺序遍历,

即printf("%d ",root->data);-->PreOrder(root->left);-->PreOrder(root->right);

void PreOrder(BTNode* root)
{//先判断是否为空树(叶节点的左节点和右节点均为空树)if (root == NULL){printf("NULL ");return;}//按根-->左子树-->右子树的顺序遍历printf("%d ",root->data);PreOrder(root->left);PreOrder(root->right);
}

注意:一定要先判断是否为空树(叶节点的左节点和右节点均为空树)

测试结果

mainc.c写入以下代码

#include "Tree.h"
int main()
{BTNode* root = CreateTree();PreOrder(root);return 0;
}

4281ea4b0863424e94e65923f055cf78.png

bd1f91734a014b38b19d7b5d86c7676d.png

和前面的图完全符合

3.中序遍历函数InOrder

:按左子树-->根-->右子树的顺序遍历,

即InOrder(root->left);-->printf("%d ", root->data);-->InOrder(root->right);

void InOrder(BTNode* root)
{//先判断是否为空树(叶节点的左节点和右节点均为空树)if (root == NULL){printf("NULL ");return;}//按左子树-->根-->右子树的顺序遍历InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}

注意:一定要先判断是否为空树(叶节点的左节点和右节点均为空树) 

测试结果

mainc.c写入以下代码

#include "Tree.h"
int main()
{BTNode* root = CreateTree();InOrder(root);return 0;
}

 f61598a6904e4cbda6aed0047cf9623a.png

dd6d7b25fa2e4f61b4164b0ffe7214d8.png 和前面的图完全符合

4.后序遍历函数PostOrder

按左子树-->右子树-->根的顺序遍历,

即PostOrder(root->left);-->PostOrder(root->right);-->printf("%d ", root->data);

void PostOrder(BTNode* root)
{//先判断是否为空树(叶节点的左节点和右节点均为空树)if (root == NULL){printf("NULL ");return;}//按左子树-->右子树-->根的顺序遍历PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}

注意:一定要先判断是否为空树(叶节点的左节点和右节点均为空树) 

测试结果

mainc.c写入以下代码

#include "Tree.h"
int main()
{BTNode* root = CreateTree();PostOrder(root);return 0;
}

ce1b1e00233142dd8d34a81c9d87d242.png

3c55dfd99ac743d0801bd39f6d065fec.png

和前面的图完全符合

4.底层分析

每调用一次PreOrder或InOrder或PostOrder函数就压入栈区,返回时出栈

在E41.【C语言】练习:斐波那契函数的空间复杂度的计算及函数调用分析文章中讲过了函数调用的堆栈分析,这里不再赘述

附一张PreOrder的调用图

e355fba3c180434e980b6c08259c252d.jpeg

附一张InOrder的调用图

9f446891de6c4ce1895580ce6945bc38.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/61795.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go并发设计模式runner模式

go并发设计模式runner模式 真正运行的程序不可能是单线程运行的,go语言中最值得骄傲的就是CSP模型了,可以说go语言是CSP模型的实现。 假设现在有一个程序需要实现,这个程序有以下要求: 程序可以在分配的时间内完成工作&#xff0…

03-13、SpringCloud Alibaba第十三章,升级篇,服务降级、熔断和限流Sentinel

SpringCloud Alibaba第十三章,升级篇,服务降级、熔断和限流Sentinel 一、Sentinel概述 1、Sentinel是什么 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保…

【服务器问题】xshell 登录远程服务器卡住( 而 vscode 直接登录不上)

打开 xshell ssh 登录远程服务器:卡在下面这里,迟迟不继续 当 SSH 连接卡在 Connection established. 之后,但没有显示远程终端提示符时,这通常意味着连接已经成功建立,说明不是网络连接和服务器连接问题,…

图片预处理技术介绍4——降噪

图片预处理 大家好,我是阿赵。   这一篇将两种基础的降噪算法。   之前介绍过均值模糊和高斯模糊。如果从降噪的角度来说,模糊算法也算是降噪的一类,所以之前介绍的两种模糊可以称呼为均值降噪和高斯降噪。不过模糊算法对原来的图像特征的…

Linux 网络编程之TCP套接字

前言 上一期我们对UDP套接字进行了介绍并实现了简单的UDP网络程序,本期我们来介绍TCP套接字,以及实现简单的TCP网络程序! 🎉目录 前言 1、TCP 套接字API详解 1.1 socket 1.2 bind 1.3 listen 1.4 accept 1.5 connect 2、…

AI/ML 基础知识与常用术语全解析

目录 一.引言 二.AI/ML 基础知识 1.人工智能(Artificial Intelligence,AI) (1).定义 (2).发展历程 (3).应用领域 2.机器学习(Machine Learning,ML) (1).定义 (2).学习方式 ①.监督学习 ②.无监督…

计算机网络常见面试题总结(上)

计算机网络基础 网络分层模型 OSI 七层模型是什么?每一层的作用是什么? OSI 七层模型 是国际标准化组织提出的一个网络分层模型,其大体结构以及每一层提供的功能如下图所示: 每一层都专注做一件事情,并且每一层都需…

蓝桥杯准备训练(lesson1,c++方向)

前言 报名参加了蓝桥杯(c)方向的宝子们,今天我将与大家一起努力参赛,后序会与大家分享我的学习情况,我将从最基础的内容开始学习,带大家打好基础,在每节课后都会有练习题,刚开始的练…

Unity类银河战士恶魔城学习总结(P156 Audio Settings音频设置)

【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址:https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了音频的大小设置与保存加载 音频管理器 UI_VolumeSlider.cs 定义了 UI_VolumeSlider 类,用于处理与音频设置相关的…

如何为 ext2/ext3/ext4 文件系统的 /dev/centos/root 增加 800G 空间

如何为 ext2/ext3/ext4 文件系统的 /dev/centos/root 增加 800G 空间 一、引言二、检查当前磁盘和分区状态1. 使用 `df` 命令检查磁盘使用情况2. 使用 `lsblk` 命令查看分区结构3. 使用 `fdisk` 或 `parted` 命令查看详细的分区信息三、扩展逻辑卷(如果使用 LVM)1. 检查 LVM …

java调用ai模型:使用国产通义千问完成基于知识库的问答

整体介绍: 基于RAG(Retrieval-Augmented Generation)技术,可以实现一个高效的Java智能问答客服机器人。核心思路是将预先准备的问答QA文档(例如Word格式文件)导入系统,通过数据清洗、向量化处理…

【C++boost::asio网络编程】有关异步Server样例以及伪闭包延长连接生命周期方法的笔记

异步Server 客户端源码Session类start函数handle_readhandle_write Server类构造函数start_accepthandle_accept 可能会造成的隐患利用伪闭包延长连接的生命周期 客户端源码 #include <iostream> #include <boost/asio.hpp> #include <string> int main() {…

力扣hot100道【贪心算法后续解题方法心得】(三)

力扣hot100道【贪心算法后续解题方法心得】 十四、贪心算法关键解题思路1、买卖股票的最佳时机2、跳跃游戏3、跳跃游戏 | |4、划分字母区间 十五、动态规划什么是动态规划&#xff1f;关键解题思路和步骤1、打家劫舍2、01背包问题3、完全平方式4、零钱兑换5、单词拆分6、最长递…

【linux】(23)对象存储服务-MinIo

MinIO 是一个高性能的对象存储服务&#xff0c;兼容 Amazon S3 API。 Docker安装MinIo 前提条件 确保您的系统已经安装了 Docker。如果还没有安装 Docker&#xff0c;可以参考 Docker 官方文档进行安装。 1. 拉取 MinIO Docker 镜像 首先&#xff0c;从 Docker Hub 拉取 Mi…

MySQL有哪些日志?

MySQL主要有三种日志&#xff1a;undo log、redo log、binlog。前两种是InnoDB特有的&#xff0c;binlog是MySQL的Server层中的。 Buffer Pool buffer pool是MySQL的缓冲池&#xff0c;里面存储了数据页、索引页、undo页等&#xff08;与数据库不一致的即为脏页&#xff09;。…

机器学习周志华学习笔记-第13章<半监督学习>

机器学习周志华学习笔记-第13章&#xff1c;半监督学习&#xff1e; 卷王&#xff0c;请看目录 13半监督学习13.1 生成式方法13.2 半监督SVM13.3 基于分歧的方法13.4 半监督聚类 13半监督学习 前面我们一直围绕的都是监督学习与无监督学习&#xff0c;监督学习指的是训练样本包…

SpringCloud框架学习(第六部分:Sentinel实现熔断与限流)

目录 十四、SpringCloud Alibaba Sentinel实现熔断与限流 1.简介 2.作用 3.下载安装 4.微服务 8401 整合 Sentinel 入门案例 5.流控规则 &#xff08;1&#xff09;基本介绍 &#xff08;2&#xff09;流控模式 Ⅰ. 直接 Ⅱ. 关联 Ⅲ. 链路 &#xff08;3&#xff0…

【Java基础面试题009】Java的I/O流是什么?

相关知识补充&#xff1a;黑马-字符集、IO流&#xff08;一&#xff09;.pdf Autism_Btkrsr/Blog_md_to_pdf - 码云 - 开源中国 (gitee.com) 黑马-IO流&#xff08;二&#xff09;.pdf Autism_Btkrsr/Blog_md_to_pdf - 码云 - 开源中国 (gitee.com) 回答重点 Java的I/O&…

第六届国际科技创新学术交流会暨管理科学信息化与经济创新发展(MSIEID 2024)

重要信息 大会官网&#xff1a;msieid2024.iaecst.org &#xff08;点击了解大会&#xff0c;参会等内容&#xff09; 大会时间&#xff1a;2024年12月6-8日 大会地点&#xff1a;中国-广州 大会简介 随着全球化和信息化的不断深入&#xff0c;管理科学、信息化和经济发展…

python学opencv|读取视频(一)灰度视频制作和保存

【1】引言 上一次课学习了用opencv读取图像&#xff0c;掌握了三个函数&#xff1a;cv.imread()、cv.imshow()、cv.imwrite() 相关链接如下&#xff1a; python学opencv|读取图像-CSDN博客 这次课我们继续&#xff0c;来学习用opencv读取视频。 【2】学习资源 首先是官网…