【计算机视觉算法与应用】模板匹配、图像配准

目录

1. 基于灰度值的模板匹配

2. 基于相关性的模板匹配

3. 基于形状的模板匹配

4. 基于组件的模板识别

5. 基于形变的模板匹配

6. 基于描述符的模板匹配

7. 基于点的模板匹配

性能比较


模板匹配的算法实现需要结合具体需求和应用场景来选择方法。以下是基于 OpenCV 的实现示例,用于实现以下模板匹配方法:

1. 基于灰度值的模板匹配

使用 OpenCV 的 cv2.matchTemplate 方法进行模板匹配。

import cv2
import numpy as np# 加载图像和模板
image = cv2.imread('image.jpg', 0)
template = cv2.imread('template.jpg', 0)
w, h = template.shape[::-1]# 匹配方法
result = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)# 结果
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv2.rectangle(image, top_left, bottom_right, 255, 2)
cv2.imshow('Matched Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

2. 基于相关性的模板匹配

相关性匹配也可以基于 cv2.matchTemplate,但使用不同的匹配模式。

result = cv2.matchTemplate(image, template, cv2.TM_CCORR_NORMED)
# 剩余代码与上面类似

3. 基于形状的模板匹配

使用 Canny 边缘检测和轮廓匹配。

# 提取轮廓
edges_image = cv2.Canny(image, 100, 200)
edges_template = cv2.Canny(template, 100, 200)# 轮廓匹配
contours_image, _ = cv2.findContours(edges_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_template, _ = cv2.findContours(edges_template, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)similarity = cv2.matchShapes(contours_template[0], contours_image[0], cv2.CONTOURS_MATCH_I1, 0.0)
print(f"Shape Similarity: {similarity}")

4. 基于组件的模板识别

使用连通组件(Connected Components)。

# 连通组件
_, labels, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8)# 遍历组件
for i in range(1, len(stats)):x, y, w, h, area = stats[i]if area > 50:  # 根据模板特性过滤cv2.rectangle(image, (x, y), (x + w, y + h), 255, 2)cv2.imshow('Components', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

5. 基于形变的模板匹配

形变模板匹配需要形变模型,比如 Thin Plate Splines 或其他变换。

from skimage.transform import warp
from skimage import data# 定义形变模型
def deform(image):# 示例:平移或旋转return warp(image, lambda xy: (xy[0] + 10, xy[1] + 10))transformed_template = deform(template)
result = cv2.matchTemplate(image, transformed_template, cv2.TM_CCOEFF_NORMED)

6. 基于描述符的模板匹配

使用 ORB 特征点和描述符。

# ORB 初始化
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(image, None)
kp2, des2 = orb.detectAndCompute(template, None)# 特征匹配
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2)
matches = sorted(matches, key=lambda x: x.distance)# 画出匹配结果
result = cv2.drawMatches(image, kp1, template, kp2, matches[:10], None, flags=2)
cv2.imshow('Descriptor Matching', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

7. 基于点的模板匹配

使用特征点检测方法,比如 FAST。

fast = cv2.FastFeatureDetector_create()
kp1 = fast.detect(image, None)
kp2 = fast.detect(template, None)# 可视化特征点
image_with_kp = cv2.drawKeypoints(image, kp1, None, color=(255, 0, 0))
template_with_kp = cv2.drawKeypoints(template, kp2, None, color=(255, 0, 0))cv2.imshow('Image Keypoints', image_with_kp)
cv2.imshow('Template Keypoints', template_with_kp)
cv2.waitKey(0)
cv2.destroyAllWindows()

性能比较

可以通过以下指标进行比较:

  1. 匹配时间:统计每种方法的运行时间。
  2. 准确性:计算匹配的正确率(例如 IoU 或精确定位的得分)。
  3. 鲁棒性:在旋转、缩放和噪声下的表现。

如需详细的性能比较,可以写一段代码封装测试和比较逻辑。需要时我可以帮助扩展测试脚本!

个人经验:

1. 工业场景几何关系明确,可以用 基于图像(相关性的就够了),测试显示,对

2. 形变,投影变换,可以考虑用特征点提取(ORB, SIFT)提取描述子, 配合匹配关系描述子配对关系计算获得。 c++ 中设计找最近点等优化算法,ranscac 去除异常点等手段。

3. 工业场景中,多用基于shape model 的查找。更稳定,速度更快(tamplate 小, 几十毫秒)

欢迎订阅本专辑,关注博主,持续更新 ~!code实战内容和经验!代码和理论即学即用!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/61771.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【25春招前端八股文】——JS数据类型检测方式

检测数据类型 # typeof 总结:数组、对象、null都会被判断为object,其他判断都正确的类型。 可以检测基本数据类型null会检测为Object,因为null也是一个空的引用对象复杂数据类型只能检测function和Object 情况说明: 数组&#x…

python学opencv|读取视频(一)灰度视频制作和保存

【1】引言 上一次课学习了用opencv读取图像,掌握了三个函数:cv.imread()、cv.imshow()、cv.imwrite() 相关链接如下: python学opencv|读取图像-CSDN博客 这次课我们继续,来学习用opencv读取视频。 【2】学习资源 首先是官网…

题外话 (火影密令)

哥们! 玩火影不! 村里人全部评论! 不评论的忍战李全保底! 哥们! 密令领了不! “1219村里人集合”领了吗! 100金币! 哥们! 我粉丝没人能上影! 老舅说的…

Go学习笔记之数据类型转换

Go数据类型转换 整型与浮点型转换 package mainimport ("fmt""strconv" )func main() {// 类型转换建议是从低位的类型转换到高位的类型,比如从int转换到float64,从float32转换到float64d : 10f : 3.14fmt.Println(float64(d) f)}其他类转换成字符串 //…

001-SpringBoot整合日志

SpringBoot整合日志 一、引入依赖二、配置 application.yml三、配置文件 logback.xml四、配置文件 WebConfigurerAdapter五、配置常量文件六、配置拦截器七、效果展示一、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId&…

Rust 图形界面开发——使用 GTK 创建跨平台 GUI

第五章 图形界面开发 第一节 使用 GTK 创建跨平台 GUI GTK&#xff08;GIMP Toolkit&#xff09;是一个流行的开源跨平台图形用户界面库&#xff0c;适用于创建桌面应用程序。结合 Rust 的 gtk-rs 库&#xff0c;开发者能够高效地构建现代化 GUI 应用。本节将详细探讨 GTK 的…

Linux的磁盘/文件管理,以centos7为例

Linux的磁盘/文件管理,以centos7为例 物理磁盘情况我的磁盘简述一下含义 使用新硬盘流程简述硬盘分区格式化(文件系统(本地文件系统))创建挂载点;挂载磁盘挂载解释 LVM(Logical Volume Management)硬盘到文件系统的层次结构LVM优势:重要概念实践操作 附录(命令) 物理磁盘情况 …

Conda-Pack打包:高效管理Python环境

在Python开发中&#xff0c;环境管理是一个不可忽视的重要环节。Conda是一个流行的包管理器和环境管理器&#xff0c;它允许用户创建隔离的环境&#xff0c;以避免不同项目之间的依赖冲突。Conda-pack是一个工具&#xff0c;可以帮助我们将一个conda环境打包成一个可移植文件&a…

人形机器人训练、机器臂远程操控、VR游戏交互、影视动画制作,一副手套全部解决!

广州虚拟动力基于自研技术推出了多节点mHand Pro动捕数据手套&#xff0c;其最大的特点就是功能集成与高精度捕捉&#xff0c;可以用于人形机器人训练、机器臂远程操控、VR游戏交互、影视动画制作等多种场景。 一、人形机器人训练 mHand Pro动捕数据手套双手共装配16个9轴惯性…

vue3+view-ui-plus+vite+less 实现自定义iview样式

首先是结论&#xff1a; "less": "^2.7.3", "less-loader": "^4.1.0", vite.config.js resolve: {alias: {// 设置路径~: path.resolve(__dirname, ./),// 设置别名: path.resolve(__dirname, ./src)},extensions: [.mjs, .js, .ts…

SpringMVC接收数据

一、访问路径设置: RequestMapping注解的作用就是将请求的URL地址和处理请求的方式(handler方法)关联起来&#xff0c;建立映射关系;SpringMVC接收到指定的请求&#xff0c;就会来找到在映射关系中对应的方法来处理这个请求 1.精准路径匹配: 在RequestMapping注解指定URL地址…

【微服务】Docker

一、Docker基础 1、依赖的兼容问题&#xff1a;Docker允许开发中将应用、依赖、函数库、配置一起打包&#xff0c;形成可移植镜像Docker应用运行在容器中&#xff0c;使用沙箱机制&#xff0c;相互隔离。 2、如何解决开发、测试、生产环境有差异的问题&#xff1a;Docker镜像…

【自用】管材流转项目前端重部署流程 vue2 webpackage4 vuecli4

一、配置 1.下载项目&#xff0c;使用 IDEA 打开&#xff0c;并配置 Nodejs 它提示我&#xff0c;需要 Node.js&#xff0c;因为 nodejs 14 的 installer 已经官网已经找不到了&#xff0c;使用 fnm 又太麻烦&#xff0c; 所以直接采用在 IDEA 中下载的方式就好了。 2.清除缓…

工程设计行业内外网文件交换解决方案:FileLink助力高效、安全的跨网协作

在工程设计行业&#xff0c;文件交换和信息共享是项目顺利推进的关键。尤其是涉及复杂的设计图纸、技术方案、合同文件等重要资料时&#xff0c;如何确保文件在内外网之间的高效、安全传输&#xff0c;直接影响到项目的进度和质量。FileLink正是为此而生&#xff0c;它为工程设…

鸿蒙多线程开发——Sendable使用注意事项

1、概 述 本文是在鸿蒙多线程开发——线程间数据通信对象03(sendable)基础上做的扩展讨论。 Sendable协议定义了ArkTS的可共享对象体系及其规格约束。符合Sendable协议的数据&#xff08;以下简称Sendable对象&#xff09;可以在ArkTS并发实例间传递。 默认情况下&#xff0…

1074 Reversing Linked List (25)

Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elements on L. For example, given L being 1→2→3→4→5→6, if K3, then you must output 3→2→1→6→5→4; if K4, you must output 4→3→2→1→5→6. Input Specif…

Wwise SoundBanks内存优化

1.更换音频格式为Vorbis 2.停用多余的音频&#xff0c;如Random Container的随机脚步声数量降为2个 3.背景音乐勾选“Stream”。这样就让音频从硬盘流送到Wwise&#xff0c;而不是保存在内存当中&#xff0c;也就节省了内存 4.设置最大发声数Max Voice Instances 5.设置音频…

产品转后端?2

产品经理的视角能让你成为更好的后端工程师&#xff1a; 理解业务需求转换为技术方案的过程知道为什么要这样设计API明白数据结构的选择如何影响用户体验了解性能指标对业务的实际影响 在实习过程中可以有意识地向后端倾斜&#xff1a; 常规产品经理工作&#xff1a; "…

C 语言 “神秘魔杖”—— 指针初相识,解锁编程魔法大门(一)

文章目录 一、概念1、取地址操作符&#xff08;&&#xff09;2、解引用操作符&#xff08;*&#xff09;3、指针变量1、 声明和初始化2、 用途 二、内存和地址三、指针变量类型的意义1、 指针变量类型的基本含义2、 举例说明不同类型指针变量的意义 四、const修饰指针1、co…

Android 使用OpenGLES + MediaPlayer 获取视频截图

概述 Android 获取视频缩略图的方法通常有: ContentResolver: 使用系统数据库MediaMetadataRetriever: 这个是android提供的类&#xff0c;用来获取本地和网络media相关文件的信息ThumbnailUtils: 是在android2.2&#xff08;api8&#xff09;之后新增的一个&#xff0c;该类为…