【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.

操作环境:

MATLAB 2022a

1、算法描述

北方苍鹰优化算法(Northern Goshawk Optimization,简称NGO)是一种新兴的智能优化算法,灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽,广泛分布于北半球,特别是北美和欧亚大陆的森林地带。它们以其出色的猎食策略和高度的适应性闻名,而NGO算法正是通过模拟这种捕猎策略来实现优化目标。

在自然界中,北方苍鹰通过多种手段捕捉猎物,这些手段主要包括高空俯冲、低空巡航和突然袭击。它们在捕猎过程中表现出的敏锐观察、精确定位以及快速反应等特性,为优化算法提供了丰富的灵感源泉。NGO算法通过将这些自然行为转化为数学模型和计算规则,从而实现对复杂优化问题的有效求解。

NGO算法的基本思想是通过模拟北方苍鹰的捕猎行为来寻找问题的最优解。具体来说,该算法将搜索空间中的每一个可能解视为猎物,而算法中的个体(即苍鹰)则通过一系列的捕猎行为来不断逼近和捕获这些猎物,从而找到最优解。为了实现这一目标,NGO算法通常包括以下几个主要步骤:

初始化种群:首先,NGO算法会在搜索空间内随机生成一定数量的初始解,这些解对应于北方苍鹰的初始位置。每个解的位置表示一个潜在的解决方案,并通过适应度函数来评估其优劣。适应度函数的设计应根据具体问题的特性来确定,通常用于衡量解的优劣程度。

个体更新:在每一轮迭代过程中,北方苍鹰会根据捕猎策略调整自身的位置。这个过程可以看作是搜索空间中的一次移动,目的是逐步逼近最优解。具体的更新策略可以分为两类:局部搜索和全局搜索。局部搜索模拟苍鹰在发现猎物后的精确打击过程,而全局搜索则模拟苍鹰在大范围内寻找猎物的过程。

捕猎行为模拟:NGO算法通过一系列数学模型模拟苍鹰的捕猎行为,这些模型通常包括俯冲攻击、突然袭击和包围等策略。在俯冲攻击中,苍鹰从高空快速下降,以极高的速度和精度扑向猎物;在突然袭击中,苍鹰通过快速改变方向和速度,以出其不意的方式捕捉猎物;在包围策略中,多个苍鹰协同合作,从不同方向逼近猎物,最终实现围捕。

适应度评价:每个个体在更新位置后,需要通过适应度函数重新评估其优劣。这一步骤对于指导下一轮的搜索具有关键作用,因为它决定了哪些个体能够进入下一轮迭代,并在搜索空间中继续移动。适应度函数的选择和设计直接影响算法的收敛速度和精度。

更新种群:在每一轮迭代结束后,NGO算法根据适应度值选择最优的个体组成新的种群。这一过程类似于自然界中的“优胜劣汰”,通过保留适应度高的个体,逐步淘汰适应度低的个体,从而保证算法朝着最优解的方向进化。

终止条件:NGO算法的迭代过程会在满足某个终止条件时结束。常见的终止条件包括迭代次数达到预设值、适应度值达到预设阈值、种群适应度值变化小于某个阈值等。满足任意一个条件时,算法停止迭代,并输出当前最优解。

NGO算法具有许多显著的优点,首先,它通过模拟北方苍鹰的自然捕猎行为,使得算法具有很强的鲁棒性和适应性。其次,由于苍鹰的捕猎行为具有多样性和灵活性,NGO算法在处理复杂、多峰、非线性优化问题时表现出色。此外,NGO算法具有较强的全局搜索能力,能够有效避免陷入局部最优,从而提高求解精度。

然而,NGO算法也存在一些挑战和改进空间。首先,算法的性能依赖于适应度函数的设计和种群初始化的质量,如何合理设计适应度函数和优化初始化策略是一个关键问题。其次,尽管NGO算法具有较强的全局搜索能力,但在处理高维、复杂度极高的问题时,仍可能面临收敛速度较慢的问题。为了提高收敛速度,可以结合其他优化算法或引入自适应机制,进一步改进NGO算法的性能。

为了更好地理解NGO算法的工作原理,我们可以通过一个具体的优化问题来说明。假设我们要解决一个函数优化问题,目标是在给定的搜索空间内找到使目标函数值最小的点。首先,我们在搜索空间内随机生成一群初始解,每个解对应一个苍鹰的位置。接下来,根据适应度函数评估每个解的优劣,适应度值较高的解代表离最优解更近。

在每一轮迭代中,每只苍鹰根据捕猎策略调整自己的位置。假设某只苍鹰发现了一个适应度值较高的区域,它会模拟俯冲攻击,迅速逼近该区域;而其他苍鹰则可能进行全局搜索,寻找更好的解。通过不断地局部搜索和全局搜索,整个种群逐步逼近最优解。在达到终止条件后,算法输出当前最优解,即为问题的最佳解决方案。

综上所述,北方苍鹰优化算法是一种基于自然界捕猎行为的智能优化算法,通过模拟北方苍鹰的捕猎策略,实现对复杂优化问题的有效求解。该算法具有鲁棒性强、适应性好、全局搜索能力强等优点,但也存在一些需要进一步研究和改进的挑战。随着算法的不断发展和完善,NGO算法在实际应用中展现出广阔的前景。无论是在工程优化、经济调度、还是科学研究等领域,NGO算法都具有重要的应用价值和潜力。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线._matlan ngo函数-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Koukesuki/article/details/139360735?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522aeafdd9f8d96d1e290410fe6dff5d405%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=aeafdd9f8d96d1e290410fe6dff5d405&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-139360735-null-null.nonecase&utm_term=218&spm=1018.2226.3001.4450

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/60614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

戴尔 AI Factory 上的 Agentic RAG 搭载 NVIDIA 和 Elasticsearch 向量数据库

作者:来自 Elastic Hemant Malik, Dell Team 我们很高兴与戴尔合作撰写白皮书《戴尔 AI Factory with NVIDIA 上的 Agentic RAG》。白皮书是一份供开发人员参考的设计文档,概述了实施 Agentic 检索增强生成 (retrieval augmented generation - RAG) 应用…

第十六届蓝桥杯模拟赛(第一期)-Python

本次模拟赛我认为涉及到的知识点: 分解质因数 Python的datetime库 位运算 简单dp 1、填空题 【问题描述】 如果一个数 p 是个质数,同时又是整数 a 的约数,则 p 称为 a 的一个质因数。 请问 2024 有多少个质因数。 【答案提交】 这是一道结…

统⼀数据返回格式快速⼊⻔

为什么会有统⼀数据返回? 其实统一数据返回是运用了AOP(对某一类事情的集中处理)的思维。 优点: 1.⽅便前端程序员更好的接收和解析后端数据接⼝返回的数据。 2.降低前端程序员和后端程序员的沟通成本,因为所有接⼝都…

数据库中的增删改查操作、聚合函数、内置函数、分组查询

数据库中的增删改查操作、聚合函数、内置函数、分组查询 CRUD简介Create 新增语法示例单⾏数据全列插⼊单⾏数据指定列插⼊多⾏数据指定列插⼊ Retrieve 检索语法⽰例构造数据 Select全列查询指定列查询查询字段为表达式为查询结果指定别名语法⽰例 结果去重查询 Order by 排序…

SpringBoot项目部署到云服务器全流程

文章目录 一、前期准备(一)云服务器选择(二)本地环境准备(三)数据库准备(若项目需要) 二、服务器配置(一)获取服务器信息(二)重置实例…

【mongodb】社区版8:改变配置bindip和授权

更改配置 sudo systemctl restart mongod (base) root@k8s-master-pfsrv:/home/zhangbin# sudo tail -n 20 /var/log/mongodb/mongod.log 日志感觉是成功了:{"t":{"$date":"2024-11-19T19:57:47.076+08:00"

如何用通义灵码助力项目开发 | OceanBase obdiag 项目共建实践

本文来自 obdiag 项目共建的用户分享 一、背景 我的数据库探索之旅始于OceanBase。作为一位满怀好奇心的DBA,我内心始终怀揣着对数据库内部运作机制的无尽向往。开源如同一把钥匙,为我们这些求知欲旺盛的“好奇猫”解锁了通往新知的神秘大门。在众多分布…

网络安全,文明上网(2)加强网络安全意识

前言 在当今这个数据驱动的时代,对网络安全保持高度警觉已经成为每个人的基本要求。 网络安全意识:信息时代的必备防御 网络已经成为我们生活中不可或缺的一部分,信息技术的快速进步使得我们对网络的依赖性日益增强。然而,网络安全…

实时数据研发 | Flink技术栈

下周要开始接触一些实时的内容了,想来是很幸运的,这是我在新人培训上提问过技术前辈的问题:“想学习实时相关技术,但是部门没有类似的需求,应该如何提升?”当时师姐说先用心去学,然后向主管证明…

Spark SQL 之 QueryStage

ExchangeQueryStageExec ExchangeQueryStageExec 分为两种

探索 RocketMQ:企业级消息中间件的选择与应用

一、关于RocketMQ RocketMQ 是一个高性能、高可靠、可扩展的分布式消息中间件,它是由阿里巴巴开发并贡献给 Apache 软件基金会的一个开源项目。RocketMQ 主要用于处理大规模、高吞吐量、低延迟的消息传递,它是一个轻量级的、功能强大的消息队列系统&…

设计模式之 责任链模式

责任链模式(Chain of Responsibility Pattern)是一种行为型设计模式,旨在将多个处理对象通过链式结构连接起来,形成一条处理请求的链条。每个处理对象都有机会处理请求,或者将请求传递给链中的下一个对象。这样&#x…

Flink-Source的使用

Data Sources 是什么呢?就字面意思其实就可以知道:数据来源。 Flink 做为一款流式计算框架,它可用来做批处理,也可以用来做流处理,这个 Data Sources 就是数据的来源地。 flink在批/流处理中常见的source主要有两大类…

python开发之Linux

文章目录 1. 基础2. 进阶链接压缩/解压缩 文件权限用户远程操作编辑文件软件安装 1. 基础 # 查看当前目录下文件 ls# 查看当前目录 pwd# 清除界面内容 clear# 切换目录 cd# 创建目录 mkdir# 创建文件 touch 文件 vi 文件# 强制删除 rm -rf # 复制文件 cp 复制文件 复制文件路径…

【数据结构】七种常用排序总结

一、七种排序及其讲解 以下为七种排序的讲解: 【数据结构】插入排序——直接插入排序 和 希尔排序 【数据结构】选择排序——选择排序 和 堆排序 【数据结构】交换排序——冒泡排序 和 快速排序 【数据结构】归并排序 —— 递归及非递归解决归并排序 二、排序的…

计算机网络(14)ip地址超详解

先看图: 注意看第三列蓝色标注的点不会改变,A类地址第一个比特只会是0,B类是10,C类是110,D类是1110,E类是1111. IPv4地址根据其用途和网络规模的不同,分为五个主要类别(A、B、C、D、…

HashMap底层原理

jdk1.8之后hashmap底层结构 jdk1.8之后,是哈希表数据结构,也可以说是数组链表或红黑树,下图是没有添加数据的一个hashmap。 现在开始添加数据,看下面具体步骤 put操作 如下,我们来简单看看hashmap的put源码&#xff…

【GD32】(三) ISP基本使用

0 前言 有一块GD32的板子不知道为啥用着用着就下载不了程序了,没办法,只能另寻他法。作为STM32的平替,GD32的功能和STM32基本是一致的,所以也可以使用ISP来下载程序。于是就开始复活这块板子。 1 BOOT模式 对于熟悉STM32开发的人…

摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现

随着科技的不断进步,摄像机视频分析软件的发展已经为我们的生活带来了许多便捷。其中,LiteAIServer视频智能分析平台的玩手机打电话检测算法技术尤为突出,它利用先进的图像处理和人工智能技术,能够自动识别并监控视频中的玩手机或…

推荐几个 VSCode 流程图工具

Visual Studio Code(简称VSCode)是一个由微软开发的免费、开源的代码编辑器。 VSCode 发布于 2015 年,而且很快就成为开发者社区中广受欢迎的开发工具。 VSCode 可用于 Windows、macOS 和 Linux 等操作系统。 VSCode 拥有一个庞大的扩展市…