【二等奖水平论文】2024五一数学建模C题22页保奖论文+22页matlab和13页python完整建模代码、可视图表+分解结果等(后续会更新)

一定要点击文末的卡片,那是资料获取的入口!

点击链接加入群聊【2024五一数学建模】:http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=hoTDlhAS5N_Ffp-vucfG5WjeeJFxsWbz&authKey=7oCSHS25VqSLauZ2PpiewRQ9D9PklaCxVS5X6i%2BAkDrey992f0t15iTOyOFIJRxp&noverify=0&group_code=962731669icon-default.png?t=N7T8http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=hoTDlhAS5N_Ffp-vucfG5WjeeJFxsWbz&authKey=7oCSHS25VqSLauZ2PpiewRQ9D9PklaCxVS5X6i%2BAkDrey992f0t15iTOyOFIJRxp&noverify=0&group_code=962731669

  • 问题分析

2.1 问题一分析

对于问题一,干扰信号分析,分析干扰信号并识别干扰信号的时间区间。首先对数据集进行数据清洗,判断其异常值以及缺失值。利用matlab的find函数判定得出无缺失值,再利用k-s检验判定数据分布方式。得出所有的数据均不服从正态分布检验,因此使用箱型图判定异常值。对于判定结果结合实际情况进行分析处理。首先利用给出数据使用固定大小的窗口遍历整个数据集,计算每个窗口中的数据特征。计算幅度差、噪声水平、持续时间、频率特征等。使用提取的特征通过TreeBagger函数训练一个包含100棵决策树的随机森林分类模型。利用问题一特定时间段内的电磁辐射和声发射数据导入模型进行分类判定。随机森林模型的准确率高达99.78%,实现对干扰信号的高精度识别

2.2 问题二分析

对于问题二,前兆特征信号分析,分析前兆特征信号并识别前兆特征信号的时间区间。首先,采用与问题一相同的数据清洗方式对问题二涉及的数据进行数据清洗。采用滑动窗口方法计算每个窗口的平均值、标准差和能量等指标。使用随机森林算法训练分类模型,目的是从特征中学习区分类别A和B的模式。利用问题二特定时间段内的电磁辐射和声发射数据导入模型并对其执行与训练数据相同的预处理和特征提取步骤。识别并合并连续或近连续的预测为前兆特征的时间窗口,形成连续的时间区间。点击链接加入群聊【2024五一数学建模】:http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=hoTDlhAS5N_Ffp-vucfG5WjeeJFxsWbz&authKey=7oCSHS25VqSLauZ2PpiewRQ9D9PklaCxVS5X6i%2BAkDrey992f0t15iTOyOFIJRxp&noverify=0&group_code=962731669icon-default.png?t=N7T8http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=hoTDlhAS5N_Ffp-vucfG5WjeeJFxsWbz&authKey=7oCSHS25VqSLauZ2PpiewRQ9D9PklaCxVS5X6i%2BAkDrey992f0t15iTOyOFIJRxp&noverify=0&group_code=962731669

👋👋👋更新23页二等奖水平成品论文+更新第一问代码数据

👋👋👋重磅更新:python+matlab完整代码+结果表

👋更新22页matlab完整版代码建模+高清运行结果图+数据分解结果等

👋目前更新13页python完整建模、可视化图表+前三问py代码等

#### (1.1) 干扰信号数据的特征:

电磁辐射和声发射中的干扰信号数据可能具有以下特征:

1. 异常值:干扰信号的数值可能明显偏离正常工作数据的范围。

2. 频率异常:干扰信号的频率可能与正常信号的频率不同。

3. 时序不规律:干扰信号的出现可能不具有规律性,与正常工作数据的时间分布不同。

#### (1.2) 识别干扰信号的时间区间:

为了识别电磁辐射和声发射信号中的干扰信号,我们可以利用以上特征建立数学模型。具体步骤如下:

1. 对于电磁辐射和声发射数据,根据干扰信号的特征进行异常检测。

2. 根据异常检测结果,确定干扰信号所在的时间区间。

3. 统计干扰信号所在时间区间的起始点和终止点,选取前5个时间区间。

在问题一中,我们可以使用一些统计学方法和规则来识别电磁辐射和声发射信号中的干扰信号。具体的数学模型和公式描述如下:

数学模型:

异常检测模型:用于检测电磁辐射和声发射数据中的异常点,即可能代表干扰信号的数据点。

干扰信号区间确定模型:根据异常检测结果,确定干扰信号所在的时间区间。

时间区间统计模型:统计干扰信号所在时间区间的起始点和终止点。

前5个时间区间选择模型:从统计结果中选取最早发生的5个干扰信号所在的时间区间。

公式描述:

1. 异常检测模型:

我们可以使用一些统计学方法,如均值、方差、四分位数等来检测异常值。一种常用的方法是使用均值和标准差进行异常检测,具体公式如下:

其中,

X 是数据点的数值,μ 是数据集的均值,σ 是数据集的标准差。通过设置阈值,当 Z-Score 的绝对值超过阈值时,将该数据点判定为异常值,即干扰信号。

2. 干扰信号区间确定模型:

根据异常检测的结果,我们可以确定干扰信号所在的时间区间。具体的步骤包括:

找出异常值所在的时间点,即异常数据点的时间戳。

对时间戳进行排序,得到异常时间点的时间序列。

根据异常时间点的时间序列,确定干扰信号所在的时间区间。

3. 时间区间统计模型:

统计干扰信号所在时间区间的起始点和终止点。

4. 前5个时间区间选择模型:

从统计结果中选取最早发生的5个干扰信号所在的时间区间,作为结果输出。

通过以上数学模型和公式描述,我们可以对电磁辐射和声发射信号中的干扰信号进行识别,并给出最早发生的5个干扰信号所在的时间区间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/6025.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

能综合验证的RISCV内核开源项目调研选择

1. 评估的背景目的 考虑维度: 资源需求,开放程度,学习难度,工具链资源。 最好是国产FPGA支持,或者开源EDA工具链支持。 目标还是寻求一款在FPGA上低成本跑起来并能够支持一定的程序开发,最好实现一款…

人工智能 | Embedding

Embedding是什么 Embedding是一种将离散的符或对象映射到连续向量空间技术。在自然语言处理领域中,Embedding常用于将单词或句子为向量形式,以便计算机可以更好地理解和处理文本数据。 通过使用Embedding,我们可以将每个单词或句子表示为一…

eclipse开启服务后,网页无法打开,如何解决?

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

kubectl_入门_service详解

Service 我们知道 Pod 的生命周期是有限的。可以用 ReplicaSet 和Deployment 来动态的创建和销毁 Pod,每个 Pod 都有自己的 IP 地址,但是如果 Pod 重建了的话那么他的 IP 很有可能也就变化了。 这就会带来一个问题:比如我们有一些后端的 Po…

jupyter notebook切换conda虚拟环境

首先,切换到某个虚拟环境,本人切换到了d2l环境: (d2l) C:\Users\10129>pip install ipykernel然后,如代码所示安装ipykernel包 最后,按下述代码执行: (d2l) C:\Users\10129>python -m ipykernel i…

mac电脑关于ios端的appium真机自动化测试环境搭建

一、app store 下载xcode,需要登录apple id 再开始下载 二、安装homebrew 1、终端输入命令&#xff1a; curl -fsSL <https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh>如果不能直接安装&#xff0c;而是出现了很多内容&#xff0c;那么这个时候不要着急&…

国产服务器操作系统部署NTP服务 _ 统信UOS _ 麒麟 _ 中科方德

原文链接&#xff1a;国产服务器操作系统部署NTP服务 | 统信UOS | 麒麟 | 中科方德 Hello&#xff0c;大家好啊&#xff01;在保持服务器时间的精确同步方面&#xff0c;时间同步服务器&#xff08;NTP服务器&#xff09;扮演着至关重要的角色&#xff0c;它能确保系统操作的时…

【论文阅读笔记】TS2Vec: Towards Universal Representation of Time Series

【论文阅读笔记】TS2Vec: Towards Universal Representation of Time Series 摘要 这段文字介绍了一个名为TS2Vec的通用框架&#xff0c;用于学习时间序列数据的表示&#xff0c;可以在任意语义层次上进行。与现有方法不同&#xff0c;TS2Vec通过对增强的上下文视图进行层次化…

【热门话题】Stylus 入门与实践详解

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 Stylus 入门与实践详解引言一、Stylus 简介1.1 什么是 Stylus&#xff1f;1.2 S…

【51单片机LCD1602显示矩阵键盘原始键值】2023-6-1

缘由https://ask.csdn.net/questions/7955623 #include "reg52.h" sbit LCD1602_RS P3^5;//RS端数据命令选择(H/L) sbit LCD1602_RW P3^6;//RW端读写选择(H/L) sbit LCD1602_EN P3^7;//EN端使能信号上升沿25ns void PanDuan1602(/*LCD1602忙判断*/) { LCD1602…

基于Vue Router和element-ui的LayOut

一、展示 二、代码 app.vue <template><div id"app"><el-container style"border: 1px solid #eee; height: 100vh"><el-aside v-bind:width"asideWidth" style"background-color: rgb(48, 65, 86);"><…

前端高频算法

分析算法排序&#xff1a; 时间复杂度: 一个算法执行所耗费的时间。 空间复杂度: 运行完一个程序所需内存的大小。 执行效率、内存消耗、稳定性 三方面入手。 1. 排序 1.1 冒泡排序 冒泡的过程只涉及相邻数据的交换操作&#xff0c;所以它的空间复杂度为 O(1)。 为了保证…

政安晨:【Keras机器学习示例演绎】(二十八)—— 使用 卷积神经网络与循环神经网络 架构进行视频分类

目录 数据收集 设置 定义超参数 数据准备 序列模型 推论 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正…

分享自己一篇在亚马逊云科技AWS官网发的Blog技术文章

小李哥在亚马逊AWS官网&#xff0c;作为第一作者发了自己的第一篇AWS Blog文章&#xff0c;也是自己今年在AWS官网的第11篇文章。文章主要内容是描述为出海的金融企业&#xff0c;搭建满足PCI-DSS合规、FIPS 140-2 Level 3安全标准的传输中数据加密云端方案&#xff0c;主要用于…

更深层次理解传输层两协议【UDP | TCP】【UDP 缓冲区 | TCP 8种策略 | 三次握手四次挥手】

博客主页&#xff1a;花果山~程序猿-CSDN博客 文章分栏&#xff1a;Linux_花果山~程序猿的博客-CSDN博客 关注我一起学习&#xff0c;一起进步&#xff0c;一起探索编程的无限可能吧&#xff01;让我们一起努力&#xff0c;一起成长&#xff01; 目录 再谈端口号 端口号的返回…

jsp驾校管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 驾校管理系统 是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统采用serlvetdaobean mvc 模式&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发…

解码Starknet Verifier:深入逆向工程之旅

1. 引言 Sandstorm为&#xff1a; 能提交独立proof给StarkWare的Ethereum Verifier&#xff0c;的首个开源的STARK prover。 开源代码见&#xff1a; https://github.com/andrewmilson/sandstorm&#xff08;Rust&#xff09; L2Beat 提供了以太坊上Starknet的合约架构图&…

C语言/数据结构——每日一题(反转链表)

一.前言 大家好&#xff01;今天又是每日一题环节。今天我为大家分享了一道单链表题——反转链表。 废话不多说&#xff0c;让我们直接进入正题吧。 二.正文 1.1题目信息 这是一道leetCode上面的一道题&#xff1a;https://leetcode.cn/problems/reverse-linked-list 1.2解…

2.2 Java全栈开发前端+后端(全栈工程师进阶之路)-前端框架VUE3-基础-Vue基本语法

文本渲染指令 文本渲染指令-v-html与v-text Vue使用了基于HTML的模板语法&#xff0c;允许开发者声明式地将DOM绑定至底层Vue实例的数据。所有Vue的模板都是 合法的HTML&#xff0c;所以能被遵循规范的浏览器和HTML解析器解析。 在前面&#xff0c;我们一直使用的是字符串插…

Java面试八股之强软弱虚引用的概念及区别

Java中强软弱虚引用的概念及区别 在Java中&#xff0c;强引用、软引用、弱引用和虚引用是四种不同类型的引用&#xff0c;它们在对象生命周期管理、垃圾收集&#xff08;Garbage Collection, GC&#xff09;以及内存管理方面有着不同的行为和用途。以下是它们的概念和主要区别…