【论文阅读笔记】TS2Vec: Towards Universal Representation of Time Series

【论文阅读笔记】TS2Vec: Towards Universal Representation of Time Series

摘要

  • 这段文字介绍了一个名为TS2Vec的通用框架,用于学习时间序列数据的表示,可以在任意语义层次上进行。与现有方法不同,TS2Vec通过对增强的上下文视图进行层次化的对比学习,这使得每个时间戳都能获得一种稳健的上下文表示。此外,为了获取时间序列中任意子序列的表示,我们可以简单地对相应时间戳的表示进行聚合。

  • 为了评估时间序列表示的质量,研究者进行了广泛的时间序列分类任务实验。结果显示,TS2Vec在125个UCR数据集和29个UEA数据集上,相较于现有的无监督时间序列表示方法取得了显著的提升。学到的时间戳级别表示也在时间序列预测和异常检测任务中获得了优越的成绩。一个在学习到的表示基础上训练的线性回归模型,其性能超过了之前时间序列预测的最好结果。进一步地,研究者展示了一种简单的方法,用于将学习到的表示应用于无监督异常检测,并在文献中设定了新的最佳结果。此外,相关源代码已经公开在GitHub上供大家使用。

Introduction

  • 时间序列的重要性:时间序列数据在多个领域内扮演着核心角色,能够帮助进行预测和模型构建。

  • 现有研究的局限:许多研究专注于学习整体的实例级表示,这对于聚类和分类等任务非常有效。然而,对于需要细粒度表示的任务,如时间序列预测和异常检测,这些表示可能不够充分。

  • 对比损失的使用:最近的研究开始使用对比损失来学习时间序列的内在结构,但现有方法仍然存在限制,例如不能区分不同粒度的多尺度上下文信息。

  • 多尺度特征的重要性:尺度不变的信息是时间序列任务成功的关键,但少数现有方法考虑到了这一点。多尺度特征能提供不同层次的语义,并改善学到的表示的泛化能力。

  • 领域偏差的问题:现有无监督时间序列表示方法多受计算机视觉和自然语言处理领域的启发,这些领域的假设(如变换不变性)可能不适用于时间序列建模。

  • TS2Vec框架的贡献:为了解决这些问题,提出了TS2Vec框架,它利用层次化对比学习在不同时间维度上区分正负样本,通过对应时间戳的最大池化来获取任意子序列的整体表示,从而能在多个分辨率捕捉时间数据的上下文信息,并生成任何粒度的细粒度表示。此外,TS2Vec的对比目标基于增强的上下文视图,以确保相同子序列在不同上下文中的表示一致性

论文的主要贡献

  • 提出TS2VEC框架:作者提出了一个统一的框架,TS2VEC,用于学习时间序列任意子序列的上下文表示,覆盖各种语义,这是首次提出的一种通用的表示方法,适用于时间序列领域的所有任务,包括但是不限于分类,预测和异常检测
  • 创新设计:
    • 层次化的对比方法:为了捕获多尺度的上下文信息,TS2VEC采用一个实力层面和时间维度上的层次化对比方法,这种方法有助于更准确地反映时间序列数据的内在结构和动态变化
    • 上下文一致性的正样本选择:和TS2VEC提出上下文一致性的概念来选择正样本,这对于具有多样分布和尺度的时间序列数据来说更合适,通过实验证明,该方法对于具有缺失值的时间序列具有较高的鲁棒性,而且通过剖析研究验证了层次化对比和上下文一致性的有效性
    • TS2Vec在三个基准时间序列任务(分类、预测和异常检测)上超越了现有的最佳方法。例如,在125个UCR数据集上平均提高了2.4%的准确率,在29个UEA数据集上提高了3.0%

Method

定义

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

模型架构

  • 架构概述:TS2Vec框架的核心是通过编码器从输入时间序列中提取表示,该过程涉及时间对比损失和实例对比损失的联合优化。整体目标是通过层次化框架在多个尺度上求和总损失,以增强不同子序列间的一致性
  • 编码器组成:
    • 输入投影层:这是一个全连接层,负责将观测到的每一个时间戳xi,t的数据映射到高维潜在向量Zi,t
    • 时间戳掩蔽模块:该模块再随机选择的时间戳处掩蔽潜在向量,生成增强的上下文视图,选择掩蔽潜在向量而不是原始值是因为时间需里的值范围可能是无界的,难以为原始数据找到一个特殊的标记
    • 扩张卷积神经网络:包括是个残差块,每一个快包含两层一维卷积层,具有扩张参数,扩张卷积通过增加感受野来加强对不同领域的表达能力
  • 操作机制:通过这些组件,TS2VEC能够处理和分析输入时间序列,抽取每一个时间戳处的上下文表示,

正样本对构建

  • 正样本对的构建:
    • 子序列一致性:鼓励时间序列的表示和采样子序列的表示更接近
    • 时间一致性:通过选择相邻段作为正样本来强制表示的局部平滑性
    • 变换一致性:通过对输入序列应用不同的变换,来促使模型学习到不变性表示
    • 子序列一致性存在水平位移时受到影响
    • 时间一致性在出现异常时导致假的正样本的问题
  • 上下文一致性策略
    • 将两个增强上下文中相同时间戳的视为正样本,通过使用时间戳掩蔽和随机裁剪来生成上下文
    • 优势:掩蔽和裁剪不会改变时间序列的幅度,这对时间序列分析比较重要,这些分析通过强制每一个时间戳在不同上下文中重建自己,一高学习表示的鲁棒性
    • 在训练阶段,随机掩蔽实例的时间戳来产生新的上下文视图。具体而言,掩蔽在输入投影层后得到的潜在向量,使用二元掩码(从伯努利分布中独立采样,p=0.5)沿时间轴进行。
    • 随机裁剪:同样在训练阶段使用,随机选择两个重叠的时间段,确保在重叠部分的上下文表示一致。随机裁剪有助于学习位置不敏感的表示,避免表示塌陷
  • 上下文一致性策略为时间序列的对比学习提供了一种有效的正样本对构建方式,有助于提升模型的泛化能力和鲁棒性

层次换对比损失的计算过程

  • 层次换对比损失旨在使得编码器能够在多种尺度上学习表示

  • 层次化对比损失的计算过程

    • 初始化损失:计算输入r和参考输入r0之间的对比损失Ldual(r,r0)
    • 迭代最大池化:
      • 在时间轴上对r和ro进行最大池化,使用的核大小是2,这一步骤逐渐降低时间序列的时间维度,从而在更高的语义层次上对时间序列进行编码
      • 在每一次池化过后,重新计算这两个池化之后的表示之间的对比损失,并且累加到总存世Lhier
      • 归一化损失:完成所有池化步骤之后,将累计的损失除以池化次数d,以得到平均化的层次对比损失
  • 对比其他工作:

    • 与T-Loss比较:仅仅在实例层面执行对比,没有考虑时间戳层面的对比
    • 与TS-TCC对比:TS-TCC仅仅在时间戳层面上执行对比,没有涵盖更高的语义层次
    • 与TNC比较:TNC鼓励在特定粒度层面上的时间局部平滑性,但是没有想TS2VEC封装不同层次的表示
  • 通过结合实例级和时间级的对比损失,TS2Vec的模型能够更好地编码时间序列的分布,这在所有的粒度层面上进行

两种对比损失

  • 时间对比损失

    • 专注于时间序列的同一个时间戳上面,从两个不同的视角的表示作为正样本,而不同的时间戳的表示作为负样本
      外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
  • 实例对比损失

    • 实例对比损失在时间戳t上面,将来自同一时间序列的不同实例的表示作为负样本

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 综合这两种损失,时间对比损失帮助模型学习时间动态,而实例对比损失帮助模型区分不同实例之间的差异

实验

分类

  • 数据集:使用UCR归档(128个单变量数据集)和UEA归档(30个多变量数据集)进行评估。
  • 对比方法:TS2Vec与其他几种无监督时间序列表示学习方法进行比较,包括T-Loss、TS-TCC、TST和TNC
  • 性能提升:TS2Vec在UCR和UEA数据集上都显示出了显著的改进。具体来说,在125个UCR数据集上平均提高了2.4%的分类准确率,在29个UEA数据集上提高了3.0%。
  • 统计测试:通过使用Nemenyi测试的Critical Difference图来展示不同分类器在所有数据集上的平均排名情况,验证了TS2Vec在平均排名上显著优于其他方法。
  • 训练时间:在NVIDIA GeForce RTX 3090 GPU上,TS2Vec显示出了所有方法中最短的训练时间。这得益于其在一个批次内跨不同粒度应用对比损失,大大提高了表示学习的效率

时间预测

  • 数据集和比较模型:TS2Vec的性能与现有的SOTA方法在四个公开数据集上进行了比较,包括三个ETT数据集和Electricity数据集。比较的模型包括Informer, LogTrans, LSTnet, TCN(适用于单变量和多变量设置),N-BEATS(仅单变量设置),以及StemGNN(仅多变量设置)。
  • 评估指标:使用均方误差(MSE)和平均绝对误差(MAE)来评估预测性能。详细的预测结果(单变量和多变量预测的MSE和MAE)由于篇幅限制在附录中报告
  • 性能提升:TS2Vec在多数情况下建立了新的SOTA,平均MSE在单变量设置下降了32.6%,在多变量设置下降了28.2%。
    表示的通用性:学习到的表示只需为每个数据集学习一次,便可以直接应用于不同的预测范围 H,这通过线性回归模型实现,展示了学习表示的通用性。
  • 效率对比:在使用NVIDIA GeForce RTX 3090 GPU时,TS2Vec的训练和推断时间与Informer进行了比较。TS2Vec在训练阶段包括两个步骤:学习时间序列表示和为每个 训练一个线性回归器。推断阶段也包括两个步骤:对应时间戳的表示推断和通过训练好的线性回归器进行预测。TS2Vec的表示模型只需训练一次即可适用于不同的预测范围,无论是在训练还是推断阶段,TS2Vec都展示了优于Informer的效率。

检测

  • 在异常检测任务中,目标是判断时间序列中最后一个点xt是否为异常
  • TS2Vec通过比较掩蔽与未掩蔽输入得到的表示之间的差异来定义异常得分
  • 具体操作是:对于一个输入序列,TS2VEC会进行两次前向传播:第一次掩蔽最后一个观测值xt,第二次不进行掩蔽
  • 实验设置:每个时间序列样本按时间顺序分为两半,前半部分用于无监督训练,后半部分用于评估。
  • 性能比较:在正常设置中,TS2Vec在Yahoo数据集上的F1得分提高了18.2%,在KPI数据集上提高了5.5%。在冷启动设置中,F1得分在Yahoo数据集上提高了19.7%,在KPI数据集上提高了1.0%

消融实验

  • 验证不同组件的有效性进行的实验设计和结果

    • 不包含时间对比损失
    • 不包含实例对比损失
    • 不包含层次对比
    • 不适用随机裁剪
    • 不适用时间戳掩蔽
    • 不包含输入投影曾
  • 比较正样本对选择策略

    • 时间一致性:将一定距离内的时间戳作为正样本
    • 子序列一致性:随机选取同一时间序列的两个子序列作为正样本
  • 实验中还尝试将数据增强技术(如抖动、缩放和置换)应用于输入时间序列的不同视图。这些增强假设时间序列数据遵循某些不变性,但在多样化且不断变化的时间序列分布中,这种假设并不成立,因此增加这些增强后观察到性能下降。

  • 最后,为了验证模型架构的选择,研究者将扩张卷积神经网络(Dilated CNN)替换为LSTM和Transformer(参数大小相当)。结果显示,无论是LSTM还是Transformer,准确率都显著下降,证明了扩张CNN是处理时间序列的有效架构选择

缺失数据的鲁棒性

  • 时间戳掩蔽:这一策略使得网络能够在不完整的上下文中推断出表示,相当于在训练过程中模拟了缺失数据的情况,从而增强了模型对实际缺失情况的适应性。
  • 层次对比:此策略引入了长距离信息,帮助模型在周围信息不完整的情况下预测缺失的时间戳,这对于处理大量缺失值至关重要

总结

  • 层次化对比学习:TS2Vec采用层次化对比学习方法,能够在不同的尺度上捕捉和学习时间序列的关键特征,这种方法通过处理增强的上下文视图来学习尺度不变的表示。
  • 时间序列分类:通过将时间序列映射到有意义的空间中,TS2Vec改进了时间序列数据的分类准确性。
  • 时间序列预测:TS2Vec提供了有效的表示,这些表示有助于预测未来的时间序列值。
  • 异常检测:框架能够识别时间序列中的异常点,这对于许多实际应用如故障检测非常重要。
  • 数据的不完整性:在处理不完整数据时,TS2Vec展示了稳定的性能,其中层次化对比损失和时间戳掩蔽是保持性能的关键因素
  • 表示的可视化:通过可视化学习到的表示,验证了TS2Vec捕捉时间序列动态的能力。这种可视化有助于更好地理解模型如何处理和解释时间数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/6013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【热门话题】Stylus 入门与实践详解

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 Stylus 入门与实践详解引言一、Stylus 简介1.1 什么是 Stylus?1.2 S…

【51单片机LCD1602显示矩阵键盘原始键值】2023-6-1

缘由https://ask.csdn.net/questions/7955623 #include "reg52.h" sbit LCD1602_RS P3^5;//RS端数据命令选择(H/L) sbit LCD1602_RW P3^6;//RW端读写选择(H/L) sbit LCD1602_EN P3^7;//EN端使能信号上升沿25ns void PanDuan1602(/*LCD1602忙判断*/) { LCD1602…

基于Vue Router和element-ui的LayOut

一、展示 二、代码 app.vue <template><div id"app"><el-container style"border: 1px solid #eee; height: 100vh"><el-aside v-bind:width"asideWidth" style"background-color: rgb(48, 65, 86);"><…

前端高频算法

分析算法排序&#xff1a; 时间复杂度: 一个算法执行所耗费的时间。 空间复杂度: 运行完一个程序所需内存的大小。 执行效率、内存消耗、稳定性 三方面入手。 1. 排序 1.1 冒泡排序 冒泡的过程只涉及相邻数据的交换操作&#xff0c;所以它的空间复杂度为 O(1)。 为了保证…

政安晨:【Keras机器学习示例演绎】(二十八)—— 使用 卷积神经网络与循环神经网络 架构进行视频分类

目录 数据收集 设置 定义超参数 数据准备 序列模型 推论 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正…

分享自己一篇在亚马逊云科技AWS官网发的Blog技术文章

小李哥在亚马逊AWS官网&#xff0c;作为第一作者发了自己的第一篇AWS Blog文章&#xff0c;也是自己今年在AWS官网的第11篇文章。文章主要内容是描述为出海的金融企业&#xff0c;搭建满足PCI-DSS合规、FIPS 140-2 Level 3安全标准的传输中数据加密云端方案&#xff0c;主要用于…

更深层次理解传输层两协议【UDP | TCP】【UDP 缓冲区 | TCP 8种策略 | 三次握手四次挥手】

博客主页&#xff1a;花果山~程序猿-CSDN博客 文章分栏&#xff1a;Linux_花果山~程序猿的博客-CSDN博客 关注我一起学习&#xff0c;一起进步&#xff0c;一起探索编程的无限可能吧&#xff01;让我们一起努力&#xff0c;一起成长&#xff01; 目录 再谈端口号 端口号的返回…

jsp驾校管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 驾校管理系统 是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统采用serlvetdaobean mvc 模式&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发…

解码Starknet Verifier:深入逆向工程之旅

1. 引言 Sandstorm为&#xff1a; 能提交独立proof给StarkWare的Ethereum Verifier&#xff0c;的首个开源的STARK prover。 开源代码见&#xff1a; https://github.com/andrewmilson/sandstorm&#xff08;Rust&#xff09; L2Beat 提供了以太坊上Starknet的合约架构图&…

C语言/数据结构——每日一题(反转链表)

一.前言 大家好&#xff01;今天又是每日一题环节。今天我为大家分享了一道单链表题——反转链表。 废话不多说&#xff0c;让我们直接进入正题吧。 二.正文 1.1题目信息 这是一道leetCode上面的一道题&#xff1a;https://leetcode.cn/problems/reverse-linked-list 1.2解…

2.2 Java全栈开发前端+后端(全栈工程师进阶之路)-前端框架VUE3-基础-Vue基本语法

文本渲染指令 文本渲染指令-v-html与v-text Vue使用了基于HTML的模板语法&#xff0c;允许开发者声明式地将DOM绑定至底层Vue实例的数据。所有Vue的模板都是 合法的HTML&#xff0c;所以能被遵循规范的浏览器和HTML解析器解析。 在前面&#xff0c;我们一直使用的是字符串插…

Java面试八股之强软弱虚引用的概念及区别

Java中强软弱虚引用的概念及区别 在Java中&#xff0c;强引用、软引用、弱引用和虚引用是四种不同类型的引用&#xff0c;它们在对象生命周期管理、垃圾收集&#xff08;Garbage Collection, GC&#xff09;以及内存管理方面有着不同的行为和用途。以下是它们的概念和主要区别…

2.Neo4j的搭建启动

Graph Database 图数据库 版本对应关系 官网都是高版本&#xff0c;推荐使用下载地址可以找到社区老版本&#xff1a; https://we-yun.com/doc/neo4j/ neo4j.bat 启动脚本 cypher-shell.bat 执行CQL语句的。 import文件夹可以放入excel,csv等数据文件&#xff0c;导入到…

多模态大语言模型和 Apple 的 MM1

原文地址&#xff1a;multimodal-large-language-models-apples-mm1 2024 年 4 月 13 日 抽象是计算机科学中最关键的概念之一&#xff0c;具有一些最强大的影响。从简单的角度来看&#xff0c;抽象就是将某一事物应用于多种不同情况的能力。例如&#xff0c;如果你创造了一种…

本地大语言模型LLM的高效运行专家 | Ollama

Ollama简介 Ollama是一个开源的大型语言模型服务工具&#xff0c;它帮助用户快速在本地运行大模型。通过简单的安装指令&#xff0c;用户可以执行一条命令就在本地运行开源大型语言模型&#xff0c;如Llama 2。Ollama极大地简化了在Docker容器内部署和管理LLM的过程&#xff0…

JAVA面试专题-微服务篇

Spring cloud Spring Cloud 5大组件有哪些 注册中心/配置中心&#xff1a;nacos 负载均衡&#xff1a;Ribbon 服务远程调用&#xff1a;Feign 服务保护&#xff1a;sentinel 服务网关&#xff1a;Gateway 微服务注册和发现 nacos和eureka的区别 负载均衡 微服务向Ribbon发送…

基于Spring Boot的校园疫情防控系统设计与实现

基于Spring Boot的校园疫情防控系统设计与实现 开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/idea 系统部分展示 管理员登录首页界面图&#xff0c;管理员进入校园疫…

Android --- 消息机制与异步任务

在Android中&#xff0c;只有在UIThread(主线程)中才能直接更新界面&#xff0c; 在Android中&#xff0c;长时间的工作联网都需要在workThread(分线程)中执行 在分线程中获取服务器数据后&#xff0c;需要立即到主线程中去更新UI来显示数据&#xff0c; 所以&#xff0c;如…

手撕spring框架(2)

相关系列 java中spring底层核心原理解析&#xff08;1&#xff09;-CSDN博客 java中spring底层核心原理解析(2)-CSDN博客 手撕spring框架&#xff08;1&#xff09;-CSDN博客 手撕spring框架&#xff08;3&#xff09;-CSDN博客 手撕spring框架&#xff08;4&#xff09;-CSDN博…

用龙梦迷你电脑福珑2.0做web服务器

用龙梦迷你电脑福珑2.0上做web服务器是可行的。已将一个网站源码放到该电脑&#xff0c;在局域网里可以访问网站网页。另外通过在同一局域网内的一台windows10电脑上安装花生壳软件&#xff0c;也可以在外网访问该内网服务器网站网页。该电脑的操作系统属于LAMP。在该电脑上安装…