语义分割(semantic segmentation)

语义分割(semantic segmentation)

文章目录

  • 语义分割(semantic segmentation)
    • 图像分割和实例分割
      • 代码实现

语义分割指将图片中的每个像素分类到对应的类别,语义区域的标注和预测是 像素级的,语义分割标注的像素级的边界框显然更加精细。应用:背景虚化

在这里插入图片描述

图像分割和实例分割

  • 图像分割将图像划分为若干组成区域,这类问题的方法通常利用图像中像素之间的相关性。它在训练时不需要有关图像像素的标签信息,在预测时也无法保证分割出的区域具有我们希望得到的语义。以下图中的图像作为输入,图像分割可能会将狗分为两个区域:一个覆盖以黑色为主的嘴和眼睛,另一个覆盖以黄色为主的其余部分身体。

在这里插入图片描述

  • 实例分割也叫同时检测并分割(simultaneous detection and segmentation),它研究如何识别图像中各个目标实例的像素级区域。与语义分割不同,实例分割不仅需要区分语义,还要区分不同的目标实例。例如,如果图像中有两条狗,则实例分割需要区分像素属于的两条狗中的哪一条。

语义分割vs实例分割:

语义分割:只关心像素是哪一个类别

实例分割:区别具体对每个实例的识别

在这里插入图片描述

代码实现

%matplotlib inline
import os
import torch
import torchvision
from d2l import torch as d2l# 导入文件
d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar','4e443f8a2eca6b1dac8a6c57641b67dd40621a49')
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')#加载图片
def read_voc_images(voc_dir, is_train=True):"""读取所有VOC图像并标注"""txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation','train.txt' if is_train else 'val.txt')mode = torchvision.io.image.ImageReadMode.RGBwith open(txt_fname, 'r') as f:images = f.read().split()features, labels = [], []for i, fname in enumerate(images):# 分别读取图片和像素特征点,png的文件大保存了图像质量,jpg文件小,适合存储色彩丰富、细节复杂的照片features.append(torchvision.io.read_image(os.path.join(voc_dir, 'JPEGImages', f'{fname}.jpg')))labels.append(torchvision.io.read_image(os.path.join(voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode))return features, labelstrain_features, train_labels = read_voc_images(voc_dir, True)
  • 展示图片
n = 5
imgs = train_features[0:n] + train_labels[0:n]
imgs = [img.permute(1,2,0) for img in imgs]
d2l.show_images(imgs, 2, n);

在这里插入图片描述

  • 标签名与RGB色调相对应(标签中对应的图片与其标号相对应)

一个标签类别对应一个RGB颜色

#@save
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],[0, 64, 128]]#@save
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat','bottle', 'bus', 'car', 'cat', 'chair', 'cow','diningtable', 'dog', 'horse', 'motorbike', 'person','potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
  • 标签中像素的类索引和RGB的转换

利用了进制数之间的转化关系,将RGB转化为单标量索引

#@save
def voc_colormap2label():"""构建从RGB到VOC类别索引的映射"""colormap2label = torch.zeros(256 ** 3, dtype=torch.long)for i, colormap in enumerate(VOC_COLORMAP):colormap2label[(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = ireturn colormap2label#@save
def voc_label_indices(colormap, colormap2label):"""将VOC标签中的RGB值映射到它们的类别索引"""colormap = colormap.permute(1, 2, 0).numpy().astype('int32')idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256+ colormap[:, :, 2])return colormap2label[idx]
  • 展示数据

0是背景而1是飞机的像素点,由png照片中读取得到

y = voc_label_indices(train_labels[0], voc_colormap2label())
y[105:115, 130:140], VOC_CLASSES[1]

在这里插入图片描述

  • 预处理数据

使用图像增广中的随机剪裁,剪裁输入图像和标签的相同区域;注意标签和特征要进行同步处理

#@save
def voc_rand_crop(feature, label, height, width):"""随机裁剪特征和标签图像"""# 随机处理记为rect,对特征图片和标签图片进行同样的rect处理rect = torchvision.transforms.RandomCrop.get_params(feature, (height, width))feature = torchvision.transforms.functional.crop(feature, *rect)label = torchvision.transforms.functional.crop(label, *rect)return feature, label# 图像增广处理
imgs = []
for _ in range(n):imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300)imgs = [img.permute(1, 2, 0) for img in imgs]
d2l.show_images(imgs[::2] + imgs[1::2], 2, n);

在这里插入图片描述

  • 自定义语义分割数据集类(Dataset)
class VOCSegDataset(torch.utils.data.Dataset):"""一个用于加载VOC数据集的自定义数据集"""def __init__(self, is_train, crop_size, voc_dir):self.transform = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])self.crop_size = crop_sizefeatures, labels = read_voc_images(voc_dir, is_train=is_train)self.features = [self.normalize_image(feature)for feature in self.filter(features)]self.labels = self.filter(labels)self.colormap2label = voc_colormap2label()print('read ' + str(len(self.features)) + ' examples')# 图片归一化def normalize_image(self, img):return self.transform(img.float() / 255)# 去掉图片尺寸较小的图片def filter(self, imgs):return [img for img in imgs if (img.shape[1] >= self.crop_size[0] andimg.shape[2] >= self.crop_size[1])]def __getitem__(self, idx):feature, label = voc_rand_crop(self.features[idx], self.labels[idx], *self.crop_size)return (feature, voc_label_indices(label, self.colormap2label))def __len__(self):return len(self.features)# 读取数据集
crop_size = (320, 480)
voc_train = VOCSegDataset(True, crop_size, voc_dir)
voc_test = VOCSegDataset(False, crop_size, voc_dir)batch_size = 64
train_iter = torch.utils.data.DataLoader(voc_train, batch_size, shuffle=True,drop_last=True,num_workers=d2l.get_dataloader_workers())
for X, Y in train_iter:print(X.shape)print(Y.shape)break
-------------------------------------
torch.Size([64, 3, 320, 480])
torch.Size([64, 320, 480])# 整合所有组件
def load_data_voc(batch_size, crop_size):"""加载VOC语义分割数据集"""voc_dir = d2l.download_extract('voc2012', os.path.join('VOCdevkit', 'VOC2012'))num_workers = d2l.get_dataloader_workers()train_iter = torch.utils.data.DataLoader(VOCSegDataset(True, crop_size, voc_dir), batch_size,shuffle=True, drop_last=True, num_workers=num_workers)test_iter = torch.utils.data.DataLoader(VOCSegDataset(False, crop_size, voc_dir), batch_size,drop_last=True, num_workers=num_workers)return train_iter, test_iter

语义分割通过将图像划分为属于不同语义类别的区域,来识别并理解图像中像素级别的内容

由于语义分割的输入图像和标签在像素上一一对应,输入图像会被裁剪为固定尺寸而不是缩放。

Q&A:

Q1:更细致的语义分割

A1:可以利用关键点分割,在计算机视觉中,关键点分割是指利用图像中的关键点信息对图像进行区域划分、分割或标定,这可以应用于从物体识别到姿态估计的多个领域。

Q2:三维语义分割该如何去做,与二维图像之间的差别有哪些

A2:把三维图片压成一个二维图片;把二维卷积化成3D卷积;3D医学影像,z轴切片,一片一片的分割,然后叠到一起。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/60070.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【竞技宝】LOL-传奇杯:姿态飞机TP绕后一锤定音

北京时间2024年11月19日,英雄联盟第二届传奇杯正在如火如荼的进行之中。昨天迎来小组赛第四个比赛日,本日一共进行了七场小组赛的对决,那么在昨日上半场的四场比赛中,登场的各支队伍都取得了什么样的表现呢?接下来小宝为大家带来小组赛day4上半场的比赛战报。 OP(宁王队) 0-1 …

网络安全之信息收集-实战-1

请注意,本文仅供合法和授权的渗透测试使用,任何未经授权的活动都是违法的。 实战:补天公益src“吉林通用航空职业技术学院” 奇安信|用户登录https://www.butian.net/Loo/submit?cid64918 域名或ip:https://www.jlth…

【后端】版本控制

版本控制 1. 什么是版本控制? 版本控制(Revision control)是一种在开发的过程中用于管理我们对文件、目录或工程等内容的修改历史,方便查看更改历史记录,备份以便恢复以前的版本的软件工程技术。简单来说就是用于管理…

【YOLOv11改进[注意力]】引入DA、FCA、SA、SC、SE + 含全部代码和详细修改方式

本文将进行在YOLOv11中引入DA、FCA、SA、SC、SE魔改v11,文中含全部代码、详细修改方式。助您轻松理解改进的方法。 一 DA、FCA、SA、SC、SE ① DA 论文:Dual Attention Network for Scene Segm

【数据结构】链表解析与实战运用(1.8w字超详细解析)

目录 引言 链表概念及结构 链表的优缺点 链表的分类 1.单向或者双向 2.带头或者不带头 3.带循环或者非循环 单链表接口函数的实现 接口函数一览 创建空节点&打印链表 尾部插入 头部插入 尾部删除 头部删除 查找 在pos位置之后插入节点 在pos位置之前插入节…

(微信小程序)基于Spring Boot的校园失物招领平台的设计与实现(vue3+uniapp+mysql)

💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…

【Linux课程学习】:Linux的调试器-gdb的使用(常见指令,cgdb)

🎁个人主页:我们的五年 🔍系列专栏:Linux课程学习 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 安装cgdb: 基本环境 1检查gdb是否…

【WRF-Urban】URBPARM.TBL参数解释及内容

【WRF-Urban】URBPARM.TBL参数解释及内容 URBPARM.TBL参数解释URBPARM.TBL参考 参考WRF-Urban教程-Urban Canopy Model URBPARM.TBL参数解释 各个城市相应的城市参数差异很大(例如,有些城市的道路可能很宽但建筑物很矮,而其他城市的道路可…

DBeaver 连接 OceanBase Oracle 租户

DBeaver 是一款通用的数据库工具软件,支持任何具有JDBC驱动程序的数据库。DBeaver 需要 Java 运行环境的支持。截稿时 DBeaver 24.0.0 版本默认提供的 OceanBase 驱动是连接 MySQL 的,想连接 Oracle 租户需要新建一个驱动器使用。 下载数据库驱动包 1、…

使用 Prompt API 与您的对象聊天

tl;dr:GET、PUT、PROMPT。现在,可以使用新的 PromptObject API 仅使用自然语言对存储在 MinIO 上的对象进行总结、交谈和提问。在本文中,我们将探讨这个新 API 的一些用例以及代码示例。 赋予动机: 对象存储和 S3 API 的无处不在…

23种设计模式-访问者(Visitor)设计模式

文章目录 一.什么是访问者模式?二.访问者模式的结构三.访问者模式的应用场景四.访问者模式的优缺点五.访问者模式的C实现六.访问者模式的JAVA实现七.代码解释八.总结 类图: 访问者设计模式类图 一.什么是访问者模式? 访问者模式(…

【开源免费】基于Vue和SpringBoot的在线考试系统(附论文)

本文项目编号 T 624 ,文末自助获取源码 \color{red}{T624,文末自助获取源码} T624,文末自助获取源码 网络的广泛应用给生活带来了十分的便利。所以把在线考试管理与现在网络相结合,利用java技术建设在线考试系统,实现…

【H2O2|全栈】MySQL的云端部署

目录 前言 开篇语 准备工作 MySQL移除 为什么需要移除? 移除操作 Yum仓库 yum简介 rpm安装 yum库安装 MySQL安装 使用yum安装 开机自启动 检查运行状态 MySQL配置 初始密码 ​编辑登录 修改root密码 退出MySQL 字符集配置 重启数据库 结束语 …

DAY30|贪心算法Part04|LeetCode:452. 用最少数量的箭引爆气球、435. 无重叠区间、763.划分字母区间

目录 LeetCode:452. 用最少数量的箭引爆气球 基本思路 C代码 LeetCode:435. 无重叠区间 基本思路 C代码 LeetCode:763.划分字母区间 基本思路 C代码 LeetCode:452. 用最少数量的箭引爆气球 力扣代码链接 文字讲解:LeetCode:452. 用最少数量的箭引爆气球 视…

Enterprise Architect 16 下载、安装与无限30天操作

文章目录 Enterprise Architect 16 简介(一)支持多种建模语言和标准(二)强大的版本控制、协作和文档管理功能(三)增强的技术和用户体验(四)高级功能和扩展性 一,下载软件…

31.3 XOR压缩和相关的prometheus源码解读

本节重点介绍 : xor 压缩value原理xor压缩过程讲解xor压缩prometheus源码解读xor 压缩效果 xor 压缩value原理 原理:时序数据库相邻点变化不大,采用异或压缩float64的前缀和后缀0个数 xor压缩过程讲解 第一个值使用原始点存储计算和前面的值的xor 如果XOR值为0&…

解决 IDEA 修改代码重启不生效的问题

前言 在使用 IntelliJ IDEA 进行 Java 项目开发时,有时会遇到一个令人头疼的问题:修改了代码后,重启服务却发现更改没有生效。通常情况下,解决这个问题需要通过 Maven 的 clean 和 compile 命令来强制重新编译,但这显…

java 根据 pdf 模板带图片文字生成pdf文件

在现代应用开发中,自动生成包含动态内容的 PDF 文档在电子发票、合同生成、表单填充等场景中有着广泛的应用。本文将介绍如何使用 iText 库动态填充 PDF 模板字段,并在指定位置插入签名和公章图片。 项目需求 假设我们有一个 PDF 模板文件,包含表单字段,如用户姓名、地址…

MTK主板定制_联发科主板_MTK8766/MTK8768/MTK8788安卓主板方案

主流市场上的MTK主板通常采用联发科的多种芯片平台,如MT8766、MT6765、MT6762、MT8768和MT8788等。这些芯片基于64位Cortex-A73/A53架构,提供四核或八核配置,主频可达2.1GHz,赋予设备卓越的计算与处理能力。芯片采用12纳米制程工艺…

Windows仿macOS?看这一篇就够了

如果你有任何关于Windows仿macOS的问题,可加入942644281 (QQ群) Date9.20更新:增加功能按键左移部分Date9.16更新:增加了大多数资源的网盘链接Date9.15更新:增加StartAllBack,资源管理器调整部…