电信数据清洗案例:利用MapReduce实现高效数据预处理

电信数据清洗案例:利用MapReduce实现高效数据预处理

在大数据时代,电信行业积累了大量的用户通话、短信、上网等行为数据。在数据分析和机器学习模型训练前,对这些数据进行清洗是至关重要的一步。MapReduce 是一种高效的数据处理模型,非常适合对大规模电信数据进行预处理。本案例展示如何利用 MapReduce 进行电信数据清洗,以确保后续分析的准确性和有效性。


目标

在海量电信数据中进行数据清洗,包括以下主要任务:

  1. 过滤无效数据:去除缺失或不合规的数据行。
  2. 数据格式标准化:统一用户ID、时间戳格式等字段。
  3. 去除重复记录:删除通话记录中的重复项,以减少数据冗余。
数据格式

假设电信通话记录的数据格式如下:

Caller_ID, Receiver_ID, Call_Duration, Timestamp
1234567890, 0987654321, 120, 2023-01-01 12:00:00
2345678901, 1234567890, 90, 2023-01-01 12:01:00
1234567890, 0987654321, NULL, 2023-01-01 12:02:00
1234567890, 0987654321, 120, 2023-01-01 12:00:00

解决方案:使用 MapReduce 进行数据清洗

1. Map阶段

在Map阶段中,数据被逐行处理并输出键值对。处理步骤如下:

  • 数据验证与清理:确保每条数据包含有效的 Caller_IDReceiver_IDCall_Duration,若存在缺失值或格式错误,直接过滤掉该行数据。
  • 格式化处理:对数据进行格式化,确保 Caller_IDReceiver_ID 使用统一格式,比如去除空格、规范化成国际标准格式等。
  • 构造键值对:以 Caller_IDReceiver_IDTimestamp 的组合作为键,以通话时长为值,输出键值对供后续处理。
# Mapper 函数示例
def mapper(record):caller_id, receiver_id, duration, timestamp = record.strip().split(",")# 数据有效性检查if not caller_id or not receiver_id or duration == "NULL":return  # 过滤无效记录# 标准化数据格式key = f"{caller_id.strip()}-{receiver_id.strip()}-{timestamp.strip()}"# 输出键值对yield key, duration.strip()
2. Shuffle和Sort阶段

在Shuffle和Sort阶段,MapReduce 框架自动将具有相同键的记录进行分组,方便下一步去重。相同的 Caller_IDReceiver_ID 以及 Timestamp 的记录将被汇集到一组,为后续的去重操作打下基础。

3. Reduce阶段

在Reduce阶段,对分组后的数据进行去重和进一步清理:

  • 去除重复项:对于每组相同的 Caller_IDReceiver_ID,只保留一条记录(例如首条记录)。
  • 数据汇总:在此阶段,也可以根据业务需求进行简单的数据汇总或统计,比如计算通话总时长。
# Reducer函数示例
def reducer(key, values):# 保留唯一记录unique_duration = next(iter(values))  # 保留第一个有效通话时长值yield key, unique_duration

MapReduce 工作流

完整的 MapReduce 数据清洗工作流如下:

  1. 输入数据:加载电信数据文件,读取每行记录。
  2. Map阶段:运行 mapper(),生成键值对并过滤掉不合规的数据。
  3. Shuffle和Sort阶段:MapReduce 自动对相同键的键值对分组。
  4. Reduce阶段:运行 reducer() 去除重复记录,输出清洗后的记录。

结果示例

清洗后的电信通话记录示例,去除了无效和重复数据:

1234567890-0987654321-2023-01-01 12:00:00, 120
2345678901-1234567890-2023-01-01 12:01:00, 90

优势

  • 高效的数据清洗:MapReduce 允许分布式处理,能够高效处理海量电信数据。
  • 便于扩展:MapReduce 的分布式特性使得数据量增加时,只需增加节点即可应对,保证了数据处理的高效性。
  • 数据质量提升:通过自动过滤和去重,确保了数据质量,为后续的数据分析和模型训练奠定了良好的基础。

适用场景

该方法不仅适用于电信行业,还适合任何拥有大规模、重复性数据的场景,例如网络日志清洗、金融交易数据处理等。MapReduce 的应用可以显著提高大规模数据处理的效率与准确性。


通过这个案例,我们展示了如何利用 MapReduce 来高效地清洗和处理电信数据,使得原始数据转换为高质量的数据输入,以支持后续的数据分析和模型构建。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/59399.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

将vscode的终端改为cygwin terminal

现在终端是默认的power shell,没有显示cygwin 接下来选择默认配置文件 找到cygwin的选项即可 然后提示可能不安全什么的,点是,就有了

html+js+css实现拖拽式便签留言

前些日子在网上冲浪时,看到一个便签式留言墙,让人耳目一新。心想这个看着不错,额想要。于是便开始搜寻是否有相应开源插件,想将其引入自己的博客中。但是搜寻了一圈,都没有符合预期的,要么功能不符合。有的功能符合&am…

Linux编程:基于 Unix Domain Socket 的进程/线程间通信实时性优化

文章目录 0. 引言1. 使用 epoll 边缘触发模式非不要不选择阻塞模式边缘触发(ET)模式优点示例 2. 使用实时调度策略3. CPU 绑定4. 使用无锁缓冲区5. 优化消息传递的大小和频率6. 使用 SO_RCVTIMEO 和 SO_SNDTIMEO7. 示例代码其他阅读 0. 引言 前几天被问…

LeetCode【0039】组合总和

本文目录 1 中文题目2 求解方法:回溯法2.1 方法思路2.2 Python代码2.3 复杂度分析 3 题目总结 1 中文题目 给定一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#…

C++入门基础知识147—【关于C++ 一元运算符重载】

成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于C 一元运算符重载的相关内容&#xff0…

2022年蓝桥杯JavaB组 省赛 题目解析(含AC_Code)

目录 前言(必读)第一题:星期计算 (简单)问题描述思路AC代码总结 第二题 山 (简单)问题描述题目分析山形数定义解题思路代码实现解析代码详解回文和“山形”判断函数主函数 AC代码复杂度分析 总结…

NLP论文速读(微软出品)|使用GPT-4进行指令微调(Instruction Tuning with GPT-4)

论文速读|Instruction Tuning with GPT-4 论文信息: 简介: 这篇论文试图解决的问题是如何通过指令调优(instruction-tuning)提升大型语言模型(LLMs)在执行新任务时的零样本(zero-shot&#xff0…

C++20 概念与约束(3)—— 约束的进阶用法

《C20 概念与约束(1)—— SFINAE》 《C20 概念与约束(2)—— 初识概念与约束》 ●《C20 概念与约束(3)—— 约束的进阶用法》 1、再谈约束主句与从句 上一篇文章中提到过约束可以无限嵌套。末尾也提到不…

c#使用COM接口设置excel单元格宽高匹配图片,如何计算?

c#使用COM接口设置excel单元格宽高如何换算 在实际工作中,经常需要在excel中插入图片。并设置单元格与图片对齐。但是excel单元格的宽度和高度使用不同的单位。单元格的宽度以字符宽度为单位,而高度以点为单位。如果按照实际值来设置,例如设…

pySpark乱码

1.现象 python的变量包含中文,用format放入SQL中时,出现乱码 2.原因 python2默认编码是ascii 3.解决办法 使用python3,并且把所有print,改成带括号的 4.在pyspark中加入参数 spark.pyspark.driver.python/usr/bin/python3 …

从 MySQL 5.7 到 8.0:理解 GROUP BY 的新规则与实战优化20241112

🎯 从 MySQL 5.7 到 8.0:理解 GROUP BY 的新规则与实战优化 🔎 引言 随着 MySQL 的不断升级,从 5.7 到 8.0,不仅性能得到提升,其对 SQL 标准的严格执行也显著提高。GROUP BY 的行为变化就是一个典型例子。…

【activiti工作流源码集成】springboot+activiti+mysql+vue+redis工作流审批流集成整合业务绑定表单流程图会签驳回

工作流集成实际项目案例,demo提供 源码获取方式:本文末个人名片直接获取。 前言 activiti工作流引擎项目,企业erp、oa、hr、crm等企事业办公系统轻松落地,请假审批demo从流程绘制到审批结束实例。 一、项目形式 springbootvue…

如何判断FPGA能够接入几个Camera

摘要:仅记录判断FPGA能够接入几个Camera的思路 在FPGA中,"quad"和"bank"是两个不同的概念,它们通常用于描述FPGA中的高速串行收发器(如Xilinx的GTX或GTH收发器)的组织方式。 Quad: 一个Quad包含…

CKA认证 | Day2 K8s内部监控与日志

第三章 Kubernetes监控与日志 1、查看集群资源状态 在 Kubernetes 集群中,查看集群资源状态和组件状态是非常重要的操作。以下是一些常用的命令和解释,帮助你更好地管理和监控 Kubernetes 集群。 1.1 查看master组件状态 Kubernetes 的 Master 组件包…

推荐一款好用的postman替代工具2024

Apifox 是国内团队自主研发的 API 文档、API 调试、API Mock、API 自动化测试一体化协作平台,是非常好的一款 postman 替代工具。 它通过一套系统、一份数据,解决多个系统之间的数据同步问题。只要定义好接口文档,接口调试、数据 Mock、接口…

《自动化运维》

一、引言 在当今信息技术飞速发展的时代,企业的 IT 系统规模不断扩大,复杂性日益增加。传统的手工运维方式已经无法满足高效、稳定、可靠的运维需求。自动化运维作为一种先进的运维理念和技术手段,正逐渐成为企业提升 IT 运维效率和质量的关键…

相机光学(四十二)——sony的HDR技术

1.概述 索尼的HDR技术包括以下几种,这些技术共同构成了索尼在HDR领域的技术矩阵,旨在提供更宽广的动态范围、更丰富的色彩表现以及更真实的光影效果: Multi-frame HDR(多帧异曝光HDR):这是一种通过不同曝光时间图像的多帧合成来实…

Springboot环境搭建详解

springboot学习视频记录: 笔记: a:Springboot maven常见依赖、配置文件笔记-CSDN博客 b:Springboot环境搭建详解-CSDN博客 day01 6:springboot的parent和starter依赖- a 7:启动类的位置配置- b 8&am…

uniapp+vue2 设置全局变量和全局方法 (兼容h5/微信小程序)

一,Vue.prototype.xxx 问题:js可以使用,但是微信小程序,在template 模板无法使用 二,globalData 问题同上,优点就是,.js文件也可以使用。但是微信小程序,在template 模板无法使用…

gdb调试redis。sudo

1.先启动redis-server和一个redis-cli。 2.ps -aux|grep reids查看redis相关进程。 3.开始以管理员模式附加进程调试sudo gdb -p 2968.注意这里不能不加sudo,因为Redis 可能以 root 用户启动,普通用户无法附加到该进程。否则就会出现可能下列情形&#…