物联网海量数据下的时序数据库选型:InfluxDB、TDEngine、MongoDB与HBase对比与建议

随着物联网(IoT)的普及,各行业纷纷部署大量传感器、设备生成的数据流,面对如此海量的时间序列数据,如何高效存储、查询和分析成为关键。为此,时序数据库(Time Series Database, TSDB)在IoT系统中得到广泛应用。本文将针对物联网场景,对主流的InfluxDB和TDEngine,及适用于时序数据处理的MongoDB和HBase进行分析和对比,帮助企业合理选择。


一、InfluxDB概述

1.1 InfluxDB简介

InfluxDB是全球知名的开源时序数据库,由InfluxData公司推出,因其出色的写入性能和灵活的查询能力而备受青睐。然而,InfluxDB的分布式集群功能属于收费模块,在社区版中仅支持单节点模式。虽然有一些第三方集群解决方案,但非官方的稳定性和性能表现可能存在不足。

1.2 InfluxDB特点

  1. 数据模型:使用Tag-Key-Value模型,便于对时间序列数据进行分类和聚合。
  2. 高效查询:支持类SQL查询语言InfluxQL,及数据分析语言Flux,适合复杂查询需求。
  3. 写入性能:单节点的写入性能表现出色,适合高频率、连续的数据流。
  4. 数据管理:支持自动数据降采样和保留策略,可以节省存储空间,适合时效性数据。

1.3 InfluxDB的局限性

对于物联网设备数据量非常庞大的场景,单节点架构存在性能瓶颈,可能导致数据处理速度受限。此外,由于官方分布式功能收费,导致企业在选择集群方案时需要考虑第三方实现的稳定性。


二、TDEngine概述

2.1 TDEngine简介

TDEngine是国内涛思数据推出的开源时序数据库,以高效的分片管理、自动分表和实时分析见长,针对物联网高频数据存储和分析场景进行了专门优化。目前在DB-Engines数据库排名中TDEngine还处于较低水平,说明其全球用户量较少,主要集中在国内市场。

2.2 TDEngine的特点

  1. 高并发写入:优化的分区和分表机制使其适合高频数据写入,并发性能优异。
  2. 自动化管理:内置分片、分表机制,无需复杂集群配置,能够轻松处理大规模数据。
  3. 实时分析能力:支持数据聚合、过滤等实时分析操作,适合大数据量的物联网应用。
  4. 数据压缩:采用高效的存储压缩技术,有效减少了存储占用,降低存储成本。

2.3 TDEngine的局限性

TDEngine在全球范围的应用量相对较少,社区和技术支持资源相对较弱,文档资料和第三方工具的兼容性不如其他数据库。对于国际市场的中小企业,技术支持和资源的可用性是一个需要考量的因素。


三、MongoDB与HBase在时序数据中的应用

物联网场景下的中小企业在选择时序数据库时,除专业时序数据库外,也可以选择分布式数据库MongoDB和HBase来满足需求。

3.1 MongoDB

MongoDB是一款基于文档的NoSQL数据库,支持分布式集群管理和数据自动分片。MongoDB的BSON格式适合嵌套数据结构,能够较好地组织时间序列数据。

  • 优势:文档存储结构灵活,支持水平扩展。具备丰富的数据索引和聚合能力,尤其适合具有层次结构的物联网数据。
  • 不足:在处理海量高频时序数据时,性能会出现瓶颈,且没有针对时间序列的特定优化功能,容易导致存储空间快速增长。

3.2 HBase

HBase是基于Hadoop HDFS的列式分布式数据库,支持水平扩展和实时数据写入,能够处理大规模的时序数据。HBase适合用于大规模的时间序列数据存储,广泛应用于监控、数据采集、网络日志等领域。

  • 优势:具备高效的写入和水平扩展能力,适合大规模分布式数据处理,兼容Hadoop生态系统。
  • 不足:查询语言支持较弱,难以满足复杂查询需求;对硬件和运维人员要求较高。

四、InfluxDB、TDEngine、MongoDB与HBase的对比

对比项InfluxDBTDEngineMongoDBHBase
存储结构Tag-Key-Value分表机制文档型列式结构
分布式支持付费版支持内置分片、分表内置分片机制HDFS分布式架构
实时计算支持流式计算和聚合内置聚合和实时分析支持聚合管道基础计算能力较弱
查询语言InfluxQL、FluxSQL-likeMongoDB AggregationHBase API
数据压缩支持数据降采样高效压缩机制依赖索引压缩无内置压缩
适用场景IoT监控、IT运维IoT、大规模物联网场景嵌套型时序数据管理网络日志、大数据处理
全球社区活跃,社区资源丰富国内用户为主广泛应用支持资源丰富社区资源丰富

优缺点分析

1. InfluxDB
  • 优点:高效数据压缩,查询语言灵活,适合实时分析,社区资源丰富。
  • 缺点:集群功能收费,第三方方案不稳定;单节点模式在数据量较大时有性能瓶颈。
2. TDEngine
  • 优点:出色的并发写入性能,自动分表和分片机制,内置实时分析,存储成本低。
  • 缺点:国际社区资源少,文档和技术支持相对有限,第三方兼容性不强。
3. MongoDB
  • 优点:结构灵活,水平扩展性强,适合层次化物联网数据,社区活跃。
  • 缺点:缺乏针对时序数据的特定优化,对高频写入性能有限制,容易造成存储成本上升。
4. HBase
  • 优点:高并发写入性能,分布式架构,适合大规模时序数据存储。
  • 缺点:查询能力较弱,对技术人员要求高,数据管理复杂性较高。

五、选择建议

根据实际应用需求,推荐以下选择建议:

  1. 如果您主要用于中小规模IoT系统,且不需要分布式集群支持,建议选择InfluxDB。InfluxDB单节点性能优异,查询语言灵活,支持实时数据分析,社区支持活跃,是IoT开发的主流选择。

  2. 对于大规模、高并发的IoT数据采集系统,TDEngine是一款性价比高的选择。其内置分表和分片机制,可以高效地处理海量数据,并具有良好的实时计算能力。如果在国内市场内,TDEngine可以获得更直接的技术支持。

  3. 如需在物联网系统中管理嵌套型的层次数据,MongoDB是不错的选择。其灵活的数据结构适合设备、传感器层次化数据的存储和管理,且易于进行集群扩展。

  4. 在极大规模分布式数据处理场景下,例如网络日志管理和超大规模的物联网数据,推荐使用HBase。其列式存储和兼容Hadoop生态系统的特性,适合数据分布在多个数据中心的场景。


六、总结

物联网中的数据量庞大,时序数据的写入频繁且实时性要求高。在选择时序数据库时,需充分考虑系统的性能需求、开发成本和维护成本。InfluxDB和TDEngine是时序数据领域的主要竞争者,而MongoDB和HBase在大规模IoT项目中也具有一定的应用潜力。通过合理选择数据库,可以帮助企业在物联网海量数据处理中提升系统性能、节省存储成本,为数据驱动的业务决策提供有力支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/56706.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react项目因eslint检测未通过而Failed to compile编译失败

环境 node v16.20.2react 18.3.1react-scripts 4.0.3 .eslintrc.json 配置: {"env": {"browser": true,"es6": true,"node": true},"settings": {"react": {"pragma": "React"…

Java应用程序的测试覆盖率之设计与实现(四)-- jacoco-maven-plugin

说在前面的话 加载jacocoagent,开始采集覆盖率数据。 java -javaagent:doc/jacocoagent.jar=includes=com.jacoco.*,output=tcpserver,port=7195,address=172.27.3.242,classdumpdir=classdumpdir/classes/ \ -jar target/jacoco-test-sample.jar. ____ _ …

Visual Studio配置tinyfiledialogs

下载地址&#xff1a;github下载链接 将下载的文件解压后&#xff0c;打开VS添加现有项 将.c文件添加进去 然后将tinyfiledialogs.h文件路径添加到包含目录 使用时包含头文件即可&#xff1a; #include <tinyfiledialogs.h>

上海亚商投顾:沪指缩量震荡 风电、传媒股集体走强

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 市场全天缩量震荡&#xff0c;三大指数集体收涨&#xff0c;北证50则跌超7%&#xff0c;超80只北交所个股跌逾…

2FA-双因素认证

双因素认证&#xff08;2FA&#xff0c;Two-Factor Authentication&#xff09;是一种提高安全性的方法&#xff0c;要求用户在登录或进行某些敏感操作时提供两种不同类型的身份验证信息。这种方法通过引入第二层验证&#xff0c;增加了账户被未经授权访问的难度。 项目结构 …

一文搞定图

图 图 常见类型与术语 图的表示 邻接矩阵 邻接表 基础操作 基于邻接矩阵的实现 基于邻接表的实现 遍历 广度优先 深度优先 图 图 是一种非线性数据结构&#xff0c;由 顶点 和 边 组成。 相较于线性关系的链表和分治关系的树&#xff0c;网络关系的图自由度更高 常见…

SEO基础:什么是LSI关键词?【百度SEO优化专家】

SEO基础&#xff1a;什么是LSI关键词&#xff1f; 大家好&#xff0c;我是林汉文&#xff08;百度SEO优化专家&#xff09;&#xff0c;在SEO&#xff08;搜索引擎优化&#xff09;中&#xff0c;LSI关键词是一个重要的概念&#xff0c;有助于提升网页的相关性和内容质量。那么…

初探Vue前端框架

文章目录 简介什么是Vue概述优势MVVM框架 Vue的特性数据驱动视图双向数据绑定指令插件 Vue的版本版本概述新版本Vue 3Vue 3新特性UI组件库UI组件库概述常用UI组件库 安装Vue安装Vue查看Vue版本 实例利用Vue命令创建Vue项目切换工作目录安装vue-cli脚手架创建Vue项目启动Vue项目…

实战-任意文件下载

实战-任意文件下载 1、开局 开局一个弱口令&#xff0c;正常来讲我们一般是弱口令或者sql&#xff0c;或者未授权 那么这次运气比较好&#xff0c;直接弱口令进去了 直接访问看看有没有功能点&#xff0c;正常做测试我们一定要先找功能点 发现一个文件上传点&#xff0c;不…

【等保测评】安全物理环境

安全物理环境 1.物理位置选择 a&#xff09;机房场地应选择在具有防震、防风和防雨等能力的建筑内 1) 应核查所在建筑物是否具有建筑物抗震设防审批文档&#xff1b; 2) 应核查机房是否不存在雨水渗漏&#xff1b; 3) 应核查门窗是否不存在因风导致的尘土严重&#xff1b;…

Find My平板键盘|苹果Find My技术与键盘结合,智能防丢,全球定位

‌平板键盘的主要用途包括提高输入效率、支持轻量化办公、提供丰富的文本编辑功能以及快捷操作。相比于直接在屏幕上打字&#xff0c;使用键盘可以显著提升输入速度&#xff0c;减少输入错误&#xff0c;特别是对于需要大量文字输入的场景&#xff0c;如写作、记录笔记等‌。平…

擎创科技声明

近日&#xff0c;我司陆续接到求职者反映&#xff0c;有自称是擎创科技招聘人员&#xff0c;冒用“上海擎创信息技术有限公司”名义&#xff0c;用“126.com”的邮箱向求职者发布招聘信息&#xff0c;要求用户下载注册APP&#xff0c;进行在线测评。 对此&#xff0c;我司郑重…

使用 Flask 实现简单的登录注册功能

目录 1. 引言 2. 环境准备 3. 数据库设置 4. Flask 应用基本配置 5. 实现用户注册 6. 实现用户登录 7. 路由配置 8. 创建前端页面 9. 结论 1. 引言 在这篇文章中&#xff0c;我们将使用 Flask 框架创建一个简单的登录和注册系统。Flask 是一个轻量级的 Python Web 框架…

web网站搭建(静态)

准备工作&#xff1a; 关闭防火墙&#xff1a; [rootlocalhost ~]# systemctl disable --now firewalld 修改enforce为permissive [rootlocalhost ~]# setenforce 0 [rootlocalhost ~]# geten getenforce getent [rootlocalhost ~]# getenforce Permissive 重启服务 [rootloca…

AUTOSAR CP 中 BswM 模块功能与使用介绍(2/2)

三、 AUTOSAR BswM 模块详解及 ARXML 示例 BswM 模块的主要功能 BswM&#xff08;Basic Software Mode Manager&#xff09;模块在 AUTOSAR 架构中扮演着模式管理的核心角色。它负责管理车辆的各种模式&#xff08;如启动、运行、停车等&#xff09;&#xff0c;并根据不同的…

网络搜索引擎Shodan(1)

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址&#xff1a;shodan(1)_哔哩哔哩_bilibili 本文主要讲解网络搜索引擎Shodan的一些用法&#xff08;host和search这两个命令&#xff09;。 Shodan 是一个网络…

智创 AI 新视界 -- 探秘 AIGC 中的生成对抗网络(GAN)应用

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

【云原生】Kubernets1.29部署StorageClass-NFS作为存储类,动态创建pvc(已存在NFS服务端)

文章目录 在写redis集群搭建的时候,有提到过使用nfs做storageclass,那时候kubernetes是1.20版本,https://dongweizhen.blog.csdn.net/article/details/130651727 现在使用的是kubernetes 1.29版本,根据之前的修改方式并未生效,反而提示:Error: invalid argument "Re…

docker 单节点arm架构服务器安装zookeeper、kafka并测试通信

kafka、zookeeper常用镜像介绍 kafka和zookeeper常见的镜像有以下三个&#xff1a;wurstmeister/zookeeper、kafka、confluentinc/cp-zookeeper、cp-kafka 和 bitnami/zookeeper、kafka。 wurstmeister/xxx: 由wurstmeister团队维护&#xff0c;提供的镜像适用于开发和测试环…

Termius工具在MAC的使用出现的问题:

Termius工具在MAC的使用出现的问题&#xff1a; 在使用SFTP时&#xff0c;出现不了本地的文件的位置 解决方案&#xff1a; 在Apple store下载的使用不了LOCAL SFTP&#xff0c; 需要在网页上进行下载才可以&#xff1a; 官网下载地址&#xff1a;https://termius.com/down…