【高等数学】多元微分学 (一)

偏导数

偏导数定义

  • 如果二元函数 f f f x 0 , y 0 x_0,y_0 x0,y0 的某邻域有定义, 且下述极限存在
    lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to 0} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx0limΔxf(x0+Δx,y0)f(x0,y0)
    其极限称作 f f f 关于 x x x 的偏导数, 记为

∂ f ∂ x ∣ ( x 0 , y 0 ) = lim ⁡ Δ x f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \frac{\partial f}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} xf(x0,y0)=ΔxlimΔxf(x0+Δx,y0)f(x0,y0)

类似的
∂ f ∂ y ∣ ( x 0 , y 0 ) = lim ⁡ Δ y f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \frac{\partial f}{\partial y}|_{(x_0,y_0)}= \lim_{\Delta y} \frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} yf(x0,y0)=ΔylimΔyf(x0,y0+Δy)f(x0,y0)

  • n n n 元函数的偏导数 u = f ( x 1 , ⋯ , x n ) u=f(x_1,\cdots,x_n) u=f(x1,,xn),
    ∂ f ∂ x i = lim ⁡ Δ x i f ( x 1 , ⋯ , x i + Δ x i , ⋯ , x n ) − f ( x 1 , ⋯ , x i , ⋯ , x n ) Δ x i \frac{\partial f}{\partial x_i}= \lim_{\Delta x_i} \frac{f(x_1,\cdots, x_i+\Delta x_i, \cdots,x_n)-f(x_1,\cdots, x_i, \cdots, x_n)}{\Delta x_i} xif=ΔxilimΔxif(x1,,xi+Δxi,,xn)f(x1,,xi,,xn)

导数性质 → \to 偏导数性质

加 : ∂ ( f ( x , y ) + g ( x , y ) ) ∂ x = ∂ f ∂ x + ∂ g ∂ x 加:\frac{\partial (f(x,y)+g(x,y))}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial x} :x(f(x,y)+g(x,y))=xf+xg
减 : ∂ ( f ( x , y ) − g ( x , y ) ) ∂ x = ∂ f ∂ x − ∂ g ∂ x 减:\frac{\partial (f(x,y)-g(x,y))}{\partial x}=\frac{\partial f}{\partial x}-\frac{\partial g}{\partial x} :x(f(x,y)g(x,y))=xfxg
乘 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = ∂ f ∂ x g + f ∂ g ∂ x 乘:\frac{\partial (f(x,y)g(x,y))}{\partial x}=\frac{\partial f}{\partial x} g+f\frac{\partial g}{\partial x} :x(f(x,y)g(x,y))=xfg+fxg
除 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = 1 g 2 ( ∂ f ∂ x g − f ∂ g ∂ x ) 除:\frac{\partial (\frac{f(x,y)}{g(x,y)})}{\partial x}=\frac{1}{g^2}\left(\frac{\partial f}{\partial x}g-f\frac{\partial g}{\partial x}\right) :x(g(x,y)f(x,y))=g21(xfgfxg)

高阶偏导数

∂ 2 f ∂ x 2 = ∂ ∂ x ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x^2}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) x22f=x(xf)
∂ 2 f ∂ x ∂ y = ∂ ∂ y ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x\partial y}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) xy2f=y(xf)
∂ 2 f ∂ y ∂ x = ∂ ∂ x ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y\partial x}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) yx2f=x(yf)
∂ 2 f ∂ y 2 = ∂ ∂ y ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y^2}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) y22f=y(yf)

  • ∂ 2 f ∂ y ∂ x \frac{\partial^2 f}{\partial y\partial x} yx2f, ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial x\partial y} xy2f 是连续函数时, ∂ 2 f ∂ y ∂ x = ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial y\partial x}=\frac{\partial^2 f}{\partial x\partial y} yx2f=xy2f.

全微分

u = f ( x , y ) u=f(x,y) u=f(x,y), $\Delta u= f(x+\Delta x, y+\Delta y)-f(x,y) $

定义 存在 A , B A,B A,B, Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z= A\Delta x+B\Delta y+ o(\rho) Δz=AΔx+BΔy+o(ρ), ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 , 称函数 f f f ( x , y ) (x,y) (x,y) 处可微, d z d z dz 称为全微分, ( A , B ) (A,B) (A,B) 称为梯度.

当函数 f f f 可微时, d z = ∂ f ∂ x d x + ∂ f ∂ y d y dz= \frac{\partial f}{\partial x} dx+ \frac{\partial f}{\partial y}dy dz=xfdx+yfdy, 梯度计算公式为 ∇ f ( x , y ) = ( ∂ f ∂ x , ∂ f ∂ y ) ⊤ \nabla f(x,y)=(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})^\top f(x,y)=(xf,yf)

微分性质 → \to 全微分性质

可微函数:
加 : d ( f + g ) = d f + d g 加: d(f+g)=df+dg :d(f+g)=df+dg
减 : d ( f − g ) = d f − d g 减: d(f-g)=df-dg :d(fg)=dfdg
乘 : d ( f g ) = g d f + f d g 乘: d(fg)= g df+f dg :d(fg)=gdf+fdg
除 : d ( f g ) = g d f − f d g g 2 除:d\left(\frac{f}{g}\right)=\frac{g df- f dg}{g^2} :d(gf)=g2gdffdg

偏导数性质 → \to 梯度性质

可微函数:
加 : ∇ ( f + g ) = ∇ f + ∇ g 加: \nabla (f+g)=\nabla f+\nabla g :(f+g)=f+g
减 : ∇ ( f − g ) = ∇ f − ∇ g 减: \nabla (f-g)=\nabla f-\nabla g :(fg)=fg
乘 : ∇ ( f g ) = g ∇ f + f ∇ g 乘: \nabla (fg)= g \nabla f+f \nabla g :(fg)=gf+fg
除 : ∇ ( f g ) = g ∇ f − f ∇ g g 2 除:\nabla \left(\frac{f}{g}\right)=\frac{g \nabla f- f \nabla g}{g^2} :(gf)=g2gffg

∂ f ∂ x \frac{\partial f}{\partial x} xf, ∂ f ∂ y \frac{\partial f}{\partial y} yf 是连续函数时, f ( x , y ) f(x,y) f(x,y) 可微.

复合函数的微分法

双层复合偏导

一元内嵌一元函数 (全导数)

  • d d x f ( u ( x ) ) = d f d u d u d x \frac{d }{d x}f(u(x)) =\frac{d f}{d u}\frac{d u}{d x} dxdf(u(x))=dudfdxdu
f
u
x

一元内嵌二元函数

  • ∂ ∂ x f ( u ( x , y ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial x} xf(u(x,y))=dudfxu
  • ∂ ∂ y f ( u ( x , y ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial y} yf(u(x,y))=dudfyu
f
u
x
y

一元内嵌三元函数

  • ∂ ∂ x f ( u ( x , y , z ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial x} xf(u(x,y,z))=dudfxu
  • ∂ ∂ y f ( u ( x , y , z ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial y} yf(u(x,y,z))=dudfyu
  • ∂ ∂ z f ( u ( x , y , z ) ) = d f d u ∂ u ∂ z \frac{\partial }{\partial z}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial z} zf(u(x,y,z))=dudfzu
f
u
x
y
z

二元内嵌一元函数 (全导数)

  • ∂ ∂ x f ( u ( x ) , v ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x \frac{\partial }{\partial x}f(u(x),v(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x} xf(u(x),v(x))=ufdxdu+vfdxdv
f
u
v
x

二元内嵌二元函数

  • ∂ ∂ x f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} xf(u(x,y),v(x,y))=ufxu+vfxv
  • ∂ ∂ y f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} yf(u(x,y),v(x,y))=ufyu+vfyv
f
u
v
x
y

二元内嵌三元函数

  • ∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} xf(u(x,y,z),v(x,y,z))=ufxu+vfxv

  • ∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} yf(u(x,y,z),v(x,y,z))=ufyu+vfyv

  • ∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z \frac{\partial }{\partial z}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z} zf(u(x,y,z),v(x,y,z))=ufzu+vfzv

f
u
v
w
x
y

三元内嵌一元函数 (全导数)

  • ∂ ∂ x f ( u ( x ) , v ( x ) , w ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x + ∂ f ∂ w d w d x \frac{\partial }{\partial x}f(u(x),v(x),w(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x}+\frac{\partial f}{\partial w}\frac{d w}{d x} xf(u(x),v(x),w(x))=ufdxdu+vfdxdv+wfdxdw
f
u
v
w
x

三元内嵌二元函数

  • ∂ ∂ x f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} xf(u(x,y),v(x,y),w(x,y))=ufxu+vfxv+wfxw

  • ∂ ∂ y f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} yf(u(x,y),v(x,y),w(x,y))=ufyu+vfyv+wfyw

f
u
v
w
x
y

三元内嵌三元函数

  • ∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial}{\partial x}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} xf(u(x,y,z),v(x,y,z),w(x,y,z))=ufxu+vfxv+wfxw

  • ∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial}{\partial y}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} yf(u(x,y,z),v(x,y,z),w(x,y,z))=ufyu+vfyv+wfyw

  • ∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z + ∂ f ∂ w ∂ w ∂ z \frac{\partial}{\partial z}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial z} zf(u(x,y,z),v(x,y,z),w(x,y,z))=ufzu+vfzv+wfzw

f
u
v
w
x
y
z

(选看) 三层复合偏导

二元内嵌二元内嵌二元函数

  • ∂ ∂ s f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ s + ∂ u ∂ y ∂ y ∂ s ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ s + ∂ v ∂ y ∂ y ∂ s ) \frac{\partial }{\partial s}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial s})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial s}) sf(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=uf(xusx+yusy)+vf(xvsx+yvsy)

  • ∂ ∂ t f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ t + ∂ u ∂ y ∂ y ∂ t ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ t + ∂ v ∂ y ∂ y ∂ t ) \frac{\partial }{\partial t}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial t})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial t}) tf(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=uf(xutx+yuty)+vf(xvtx+yvty)

f
u
v
x
y
s
t

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/55905.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

音乐播放器-0.专栏介绍​

1.简介 本专栏使用Qt QWidget作为显示界面,你将会学习到以下内容: 1.大量ui美化的实例。 2.各种复杂ui布局。 3.常见显示效果实现。 4.大量QSS实例。 5.Qt音频播放,音乐歌词文件加载,展示。 6.播放器界面换肤。 相信学习了本专栏…

【力扣 | SQL题 | 每日5题】力扣2362, 2356, 2394, 2480, 2388

1. 力扣2362:生成发票 1.1 题目: 表: Products ------------------- | Column Name | Type | ------------------- | product_id | int | | price | int | ------------------- product_id 包含唯一值。 该表中的每一行显示了一个产品的 ID …

springboot中service和controller作用

在 Spring Boot 应用程序中,Service 层和 Controller 层各自承担着不同的职责。了解这两者的作用有助于更好地设计和组织应用程序。下面详细介绍 Service 层和 Controller 层的作用及其区别。 Controller 层的作用 处理 HTTP 请求: Controller 层主要负责接收来自客户端的 H…

【Qt】Qt的介绍——Qt的概念、使用Qt Creator新建项目、运行Qt项目、纯代码方式、可视化操作、认识对象模型(对象树)

文章目录 Qt1. Qt的概念2. 使用Qt Creator新建项目3. 运行Qt项目3.1 纯代码方式实现3.2 可视化操作实现 4. 认识对象模型(对象树) Qt 1. Qt的概念 Qt 是一个跨平台的 C 图形用户界面应用程序开发框架。它是软件开发者提供的用于界面开发的程序框架&#…

Mysql(5)—函数

一、关于函数 1.1 简介 MySQL提供了许多内置的函数以帮助用户进行数据操作和分析。这些函数可以分为几类,包括聚合函数、字符串函数、数值函数、日期和时间函数、控制流函数等。 ​ ‍ 1.2 发展 早期版本(MySQL 3.x 和 4.x) : MySQL 最初…

无人机之三维航迹规划篇

一、基本原理 飞行环境建模:在三维航迹规划中,首先需要对飞行环境进行建模。这包括对地形、障碍物、气象等因素进行准确的测量和分析,以获得可行的飞行路径。 飞行任务需求分析:根据无人机的任务需求,确定航迹规划的…

Android 原生程序使用gdb, addr2line, readelf调试

Platform: RK3368 OS: Android 6.0 Kernel: 3.10.0 文章目录 一 gdb1. 原生程序添加调试符号2. 主机上adb push 编译好的原生程序到设备3. 设备上使用gdbserver运行原生程序4. 主机上设置adb端口转发5. 主机上运行gdb调试 二 addr2line三 readelf 一 gdb GDB(GNU…

Java最全面试题->计算机基础面试题->计算机网络面试题

计算机网络 下边是我自己整理的面试题,基本已经很全面了,想要的可以私信我,我会不定期去更新思维导图 哪里不会点哪里 1.说一下TCP/IP四层模型 TCP/IP协议是美国国防部高级计划研究局为实现ARPANET互联网而开发的。 网络接口层&#xff…

现代物流管理:SpringBoot技术突破

3系统分析 3.1可行性分析 通过对本智能物流管理系统实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本智能物流管理系统采用SSM框架,JAVA作为开发语…

如何在Docker中运行Squid

测试环境 VMware Rocky Linux 9.4 实现步骤 过程:写一个Dockerfile构建Squid镜像; 再写一个启动脚本start_squid.sh,在启动脚本中配置并运行Squid。 编写Dockerfile 以rockylinux9.3做基础镜像,通过yum安装Squid, 拷贝squid.conf FROM …

【云从】九、CDN加速

文章目录 1、CDN基本概念2、CDN加速3、云CDN 1、CDN基本概念 源站:用户稳定运行的业务应用服务器 静态内容:用户多次访问某一资源,响应返回的数据都是相同的内容 例如:图片、视频、软件安装包、安卓 apk 安装包、压缩包文件等动态内容&…

c++ cpu亲缘性

CPU亲缘性(CPU Affinity)是指将线程或进程固定到特定的CPU核心上运行的能力。这种做法可以减少上下文切换,提高缓存利用率,从而提升性能。 原理 缓存局部性: 当线程在同一个CPU上运行时,它可以利用该CPU的缓存&#…

【数据结构】栈和队列经典题目

目录 1.有效的括号【链接】 代码实现 2.用队列实现栈【链接】 代码实现 3.用栈实现队列 ​编辑 代码实现 4.循环队列(数组实现)【链接】 代码实现 1.有效的括号【链接】 题目描述: 给定一个只包括 (,),{&…

关于Flutter 中,App内购支付集成 Google 签名的管理-手动生成签名 APK

Google play 手动生成签名 APK 1. 要创建一个 JKS(Java KeyStore)文件,可以使用 keytool 命令行工具。keytool 是 JDK 自带的工具,用于生成和管理密钥库和证书。 步骤 1:安装 JDK 确保已安装 JDK。如果未安装&#…

Mycat 详细介绍及入门实战,解决数据库性能问题

一、基本原理 1、数据分片 (1)、水平分片 Mycat 将一个大表的数据按照一定的规则拆分成多个小表,分布在不同的数据库节点上。例如,可以根据某个字段的值进行哈希取模,将数据均匀的分布到不同的节点上。 这样做的好处…

数据结构7——二叉树的顺序结构以及堆的实现

在上篇文章数据结构6——树与二叉树中,我们了解了树和二叉树的概念,接着上篇文章,在本篇文章中我们学习二叉树顺序结构的实现。 目录 1. 二叉树的顺序存储结构 2. 堆的概念及结构 1. 堆的概念 2. 堆的结构 3. 堆的实现 1. 堆节点 2. 交…

R语言实现logistic回归曲线绘制

方式一&#xff1a;编制函数 x<-rnorm(10000)#设置随机种子 #编写绘图函数代码快 f <- function(x){y 1/(1 exp(-x))plot(x,y)}#sigmoid函数 f(x)​ 方式二&#xff1a;Sigmoid函数代码 x<-rnorm(10000)#设置随机种子 #编写绘图函数代码块 #y<-1/(1exp(-x)) y&…

数据结构-复杂度

复杂度 1.数据结构1.1算法 2.算法效率2.1复杂度的概念 3.时间复杂度3.1大O渐进表示法3.2时间复杂度计算示例3.2.1 示例13.2.2 示例23.2.3 示例33.2.4 示例43.2.5 示例5&#xff1a;3.2.6 示例63.2.7 示例7 4.空间复杂度4.1.1 示例14.1.2 示例2 5.常见复杂度对比6.复杂度算法题6…

【重学 MySQL】六十七、解锁检查约束,守护数据完整性

【重学 MySQL】六十七、解锁检查约束&#xff0c;守护数据完整性 检查约束的基本概念检查约束的语法检查约束的使用场景注意事项示例 在MySQL中&#xff0c;检查约束&#xff08;CHECK&#xff09;是一种用于确保表中数据满足特定条件的约束。 检查约束的基本概念 检查约束用…

考研前所学c语言02(2024/10/16)

1.一个十进制的数转化为二进制的就是不断除二取余&#xff0c;得到的余数从下到上取 比如123&#xff1a; 结果为&#xff1a; 同理其他的十进制转八进制&#xff0c;十六进制就除八&#xff0c;除十六即可 再比如123转十六进制&#xff1a; 因为余数是11&#xff0c;十六进…