GPT系列

GPT(Generative Pre-Training):

训练过程分两步:无监督预训练+有监督微调

模型结构是decoder-only的12层transformer

1、预训练过程,窗口为k,根据前k-1个token预测第k个token,训练样本包括7000本书的内容

2、微调过程,使用有标记的样本,样本输入预训练模型,使用最后一层transformer的输出,接linear+softmax层,预测输出

损失函数如下

使用L1作为辅助优化目标有两点好处,首先能够提高模型的泛化能力,第二是能够加速收敛。

3、不同任务的输入格式适配:将结构化的输入转化为有序序列



GPT系列演化参考文档:简单之美 | GPT 系列模型技术演化之路



GPT-2

与 GPT-1 不同,GPT-2 对每个 Encoder Block 的自注意力层,前后分别都进行了层归一化(Layer Normalization)操作,即在每一层的输入和输出都有一个 Layer Normalization 子层。

在输入自注意力层之前新增 Layer Normalization 层,能够将输入数据的均值和方差分别标准化为 0 和 1,使数据在不同的尺度上保持一致。而且,这种策略能够缓解梯度消失和梯度爆炸的问题。同时,层归一化有助于优化器在更新权重时找到合适的方向,提高模型的训练稳定性和收敛速度。

GPT-3

预训练后,不微调,使用上下文学习(In Context Learning,ICL)
引入稀疏注意力机制

GPT-3 就是使用的普通 Transformer 和 Sparse Transformer 的混合模式。Sparse Transformer 的特点是只关注 Top-k 个贡献最大的特征的状态,它使用稀疏注意力机制替代了 Transformer 的密集注意力。

GPT-3.5/InstructGPT

代码数据训练和人类偏好对齐

基于人类反馈的强化学习算法RLHF

基于GPT-3进行微调,三个阶段的微调方法和过程,可以通过下图给出的步骤来简要说明

分别对应于上面提到的三个模型(SFT 模型、RM 模型、RL 模型),InstructGPT 的训练过程主要包括如下三个步骤:
Step 1: Collect demonstration data, and train a supervised policy.
Step 2: Collect comparison data, and train a reward model.
Step 3: Optimize a policy against the reward model using PPO.

GPT-4

GPT -4是一个多模态大模型

GPT-4 的核心原理是,基于 Decoder-only 的 Transformer 自回归语言模型,即通过给定的文本序列,预测下一个词的概率分布,从而生成新的文本。GPT-4 采用了大规模的无监督预训练和有监督微调的方法,即先在海量的通用文本语料上进行预训练,学习文本的通用特征和规律,然后在特定的下游任务上进行微调,学习任务的特定知识,从而实现对任意文本的生成和理解。

OpenAI在技术报告中强调了GPT-4的安全开发重要性,并应用了干预策略来缓解潜在问题,如幻觉、隐私泄露等。





本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/54647.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

配置静态ip

背景:因业务需要需要将一台服务器从机房搬到实验室,机房是光纤,实验室是网线,需要重新配置下静态ip 确认网络配置文件(网上没找到,不清楚一下方法对不对) 先随便一个网口连接网线,执行 ifconfig -a 找到带“RUNNING”的(lo不是哈)----eno1 到/etc/sysconfig/network…

ansible 剧本模式

目录 1.剧本格式 ​编辑​编辑2.案例1创建目录分发文件剧本 2.1剧本中用到的命令 2.2书写具体剧本 3.案例2 分发 安装软件包 启动服务的剧本 3.1下载软件包 3.2用yum安装 3.3启动服务 4.找出ansible中对应的模块 5.剧本实现 4.ansible 剧本变量 4.1常用的…

YOLO11涨点优化:注意力魔改 | 轻量级自注意力机制CoordAttention | CVPR2021

💡💡💡本文改进内容:CoordAttention优势,不仅会考虑输入的特征信息,还会考虑每个像素点的位置信息,从而更好地捕捉空间上的局部关系和全局关系。 💡💡💡本文改进:分别加入到YOLO11的backbone、neck、detect,助力涨点 改进1结构图: 改进2结构图: 改进3结构

【HTTPS】深入解析 https

我的主页:2的n次方_ 1. 背景介绍 在使用 http 协议的时候是不安全的,可能会出现运营商劫持等安全问题,运营商通过劫持 http 流量,篡改返回的网页内容,例如广告业务,可能会通过 Referer 字段 来统计是…

【Java】—— 泛型:泛型的理解及其在集合(List,Set)、比较器(Comparator)中的使用

目录 1. 泛型概述 1.1 生活中的例子 1.2 泛型的引入 2. 使用泛型举例 2.1 集合中使用泛型 2.1.1 举例 2.1.2 练习 2.2 比较器中使用泛型 2.2.1 举例 2.2.2 练习 1. 泛型概述 1.1 生活中的例子 举例1:中药店,每个抽屉外面贴着标签 举例2&…

图示详解OpenEuler下 DNS安装、配置与测试

前言 DNS配置内容、步骤、参数较多,初学者很难短时间掌握,另外,理解DNS工作原理也有一定的难度,一次配置成功的概率不大,因此,建议在配置DNS之前,先读一下之前笔者的博文《详解DNS工作原理及实…

(20)MATLAB使用卡方(chi-square)分布生成Nakagami-m分布

文章目录 前言一、使用卡方分布函数生成Nakagami分布随机变量二、MATLAB仿真1.仿真代码2.运行结果 前言 Nakagami分布随机变量的生成,可以使用gamma分布实现,也可以使用卡方(chi-square)分布随机变量生成。使用伽马(g…

120页满分PPT | 企业级业务架构和IT架构规划方案

方案内容综述 方案涵盖了从战略分析到具体实施路径的内容。提出了IT架构规划的工作思路,包括项目启动、部门访谈、资料收集、内部数据库搜索与先进实践研究等步骤,旨在通过这些步骤完成现状及差距分析,并基于此设计未来的应用架构、数据架构…

算法:724.寻找数组的中心下标

题目 链接:leetcode链接 思路分析(前缀和) 根据题意,我们可以将数组看成三个部分 [left] [mid] [right] 我们只需要[left]区间内的元素和等于[right]区间的元素和即可,此时mid就是中心下标 那么我们可以借助前缀和思…

鸿蒙开发之ArkUI 界面篇 二十 position绝对定位及层级zIndex

position控制组件的位置,可以实现层叠效果,Android中的FramLayout,通常用在左上角有些图标之类,绝对定位后的组件不占用自身原有位置,每个子组件都有这个属性,只是不用这个属性的时候不起作用,.zIndex()属性要和positi…

微服务——分布式事务

目录 分布式事务 1.1分布式事务的特性 1.2分布式事务应用背景 ​编辑 1.3.认识Seata 1.4部署TC服务 1.4.1.准备数据库表 1.4.2.准备配置文件 1.4.3.Docker部署 1.5.微服务集成Seata 1.5.1.引入依赖 1.5.2.改造配置 1.5.3.添加数据库表 ​编辑1.6.XA模式 1.6.1.两…

聊聊Mysql的MVCC

1 什么是MVCC? MVCC,是Multiversion Concurrency Control的缩写,翻译过来是多版本并发控制,和数据库锁一样,他也是一种并发控制的解决方案。 我们知道,在数据库中,对数据的操作主要有2种&#…

【数据结构 | PTA】表

文章目录 7-1 重排链表7-2 链表去重7-3 两个有序链表序列的合并7-4 两个有序链表序列的交集 7-1 重排链表 输入格式: 每个输入包含1个测试用例。每个测试用例第1行给出第1个结点的地址和结点总个数,即正整数N (≤105)。结点的地址是5位非负整数&#xff…

K8s持久化存储PV和PVC(通俗易懂)

一、PV和PVC的引入 Volume 提供了非常好的数据持久化方案,不过在可管理性上还有不足。 拿前面 AWS EBS 的例子来说,要使用 Volume,Pod 必须事先知道如下信息: 当前 Volume 来自 AWS EBS。EBS Volume 已经提前创建,并且知道确切的 volume-id。Pod 通常是由应用的开发人员…

Linux安装配置Jupyter Lab并开机自启

文章目录 1、安装配置jupyter lab首先需要使用pip3安装:生成配置文件和密码: 2、设置开机自启首先通过which jupyter查询到可执行文件路径:设置自启服务: 1、安装配置jupyter lab 首先需要使用pip3安装: pip3 instal…

细说机器学习和深度学习

背景 平常业务开发中每天都要接触到机器学习和深度学习的概念,在听了很多大佬的普及后,发现甚是有趣。于是小编想着着手开始学习这部分的内容。 那废话不多说,就从最基础的机器学习和神经网络开始~ 一、机器学习基础 1、机器学习是什么&a…

2024 uniapp入门教程 01:含有vue3基础 我的第一个uniapp页面

uni-app官网uni-app,uniCloud,serverless,快速体验,看视频,10分钟了解uni-app,为什么要选择uni-app?,功能框架图,一套代码,运行到多个平台https://uniapp.dcloud.net.cn/ 准备工作:HBuilder X 软件 HBuilder X 官网下载&#xf…

职场上的人情世故,你知多少?这五点一定要了解

职场是一个由人组成的复杂社交网络,人情世故在其中起着至关重要的作用。良好的人际关系可以帮助我们更好地融入团队,提升工作效率,甚至影响职业发展。在职场中,我们需要了解一些关键要素,以更好地处理人际关系&#xf…

泛微流程隐藏按钮

隐藏右键菜单的按钮 控制台输入 mobx.toJS(WfForm.getGlobalStore().rightMenu.rightMenus) 获取相对应 type在js中进行隐藏 ecodeSDK.overwritePropsFnQueueMapSet(WeaRightMenu,{ //复写组件名隐藏菜单fn:(newProps)>{ //newProps代表组件参数newProps.datas newProps.…

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation

题目:用于视觉语言导航的层次化跨模态智能体 摘要 1. 问题背景和现有方法 VLN任务:这是一种复杂的任务,要求智能体基于视觉输入和自然语言指令进行导航。 现有方法的局限性:之前的工作大多将这个问题表示为离散的导航图&#x…