【HTTPS】深入解析 https

我的主页:2的n次方_      

在这里插入图片描述

1. 背景介绍

在使用 http 协议的时候是不安全的,可能会出现运营商劫持等安全问题,运营商通过劫持 http 流量,篡改返回的网页内容,例如广告业务,可能会通过 Referer 字段 来统计是从哪个页面转接进来的,但是运营商就可能把信息改为自己的,也就是从运营商点击的广告,从而侵害原厂商的的利益,出了这个案例,还可能会篡改其他的信息,使得用户在访问一些界面时强制跳转广告或者下载某个应用时,点击下载却下载了其他应用等等,这些问题都是由于 http 是明文传输的,所以就引入了 https

HTTPS 其实就是 HTTP 的安全版本, HTTPS通过加密、认证和完整性保护,确保通信内容不会被第三方窃听或篡改

先来介绍几个概念:

明文:要传输的原始数据

密文:把明文进行加密之后的数据

密钥:进行加密和解密的重要数据(辅助工具)

公钥:可以公开的密钥,通常可以广泛的分发给任何需要的人

私钥:严格保密的密钥,只有密钥所有者才知道,与公钥成对出现,用于解密由客户端使用服务器公钥加密后的数据

对称加密:不论是加密还是解密,都使用同一个密钥

非对称加密:使用公钥对数据进行加密,使用私钥对数据进行解密,例如,A 要向 B 发送机密信息,A 可以使用 B 的公钥对信息进行加密,B 收到加密信息后,使用自己的私钥进行解密。

为了防止上述的数据被篡改的安全问题,就需要把数据进行加密传输

2. 引入对称加密

一般情况下都是多个客户端对应一个服务器,这些客户端在连接上服务器之后需要自己生成一个随机的对称密钥给服务器,服务器拿到这个密钥之后才能解密,如果多个客户端使用同一个密钥,那么黑客登录一个客户端就之后密钥是什么了

但是上面的过程还是存在一个问题的:

使用对称加密的话,这其实和不加密也没什么区别

3. 引入非对称加密

这里是在之前使用对称加密的基础上引入了非对称加密,对对称加密的密钥进行加密,那为什么不都使用非对称加密呢?非对称加密的的解密过程其实是比较消耗时间的,所以进行一次非对称加密,后续的进行对称加密既保证了数据的安全性,也保证了传输效率

客户端通过服务器的公钥对后续的对称加密的密钥进行加密,服务器通过私钥进行解密:

在上面的过程中,被黑客入侵的中间设备由于没有私钥,所以不能解析客户端使用公钥加密的数据,后续再进行对称加密就保证了数据的安全性

不过呢,上面的还是有缺陷的,通过中间人攻击就可以破解

4. 中间人攻击

被黑客入侵的设备在客户端面前假扮服务器,在服务器面前假扮客户端,就能够骗过双方

就像上面的过程那样,客户端并不知道当前的公钥是黑客伪造的,中间设备劫持上面的数据之后,使用 自己的私钥 pri2 就知道了对称密钥的内容,信息就会被泄露篡改了

5. 证书机制

其实上面问题的关键是客户端无法区分拿到的公钥是否是正常的,通过引入证书机制就可以解决上述的中间人攻击问题,如果想要搭建服务器使用 HTTPS 就需要在公证机构里申请证书(包括证书发布机构,证书有效期,证书所有者,公钥,签名等),服务器申请到证书之后,客户端除了从服务器获取公钥之外还会获取对应的证书。

证书中的签名包括校验和 + 加密,原始数据相同,计算的校验和也就相同,校验和不同就说明被篡改过了,这里的加密采用的是非对称加密,公证机构自己也会有一对公钥和私钥,公钥分发给各种客户端,公正机构用私钥对校验和进行加密,就得到了数字签名

之后的过程就是,客户端验证数字签名

  1. 客户端吧证书中的各个字段再计算一次校验和,得到 checksum1
  2. 客户端使用公证机构的公钥对数字签名进行解密,得到 checksum2(公钥加密只有对应的私钥才能解密,私钥加密,对应的公钥才能解密)
  3. 对比两次的校验和,如果相等就表明得到的证书和服务器发过来的是同一个证书,如果不相等就意味着证书上的内容被篡改过了,就会弹出警告的信息

那么客户端怎么确定拿到的公钥是公证机构的而不是黑客篡改过的?

客户端拿到公证机构的公钥主要通过操作系统或浏览器内置的方式获得,并不是通过网络传输获得的

一般情况下黑客获得不了公证机构的私钥,如果说黑客自己去生成一个私钥,客户端的公证机构的公钥也解密不了,所以通过引入证书机制就使得传输过程更加的安全了


Fiddler 等抓包工具为什么可以解析 HTTPS 加密的数据?

抓包工具也会提供一个证书,客户端同意信任之后就能够拿到客户端的对称密钥,大概是下面的过程:

当服务器发送的证书被 Fiddler 抓到之后,就会篡改证书中的内容,变成自己的证书,然后把整数中服务器的公钥替换成自己的公钥,根据新生成的证书重新计算得到校验和,并且使用自己的私钥来加密,得到数字签名,由于已经信任了 Fiddler 的证书,也就拿到了 Fiddler 的公钥 ,之后也是使用这个公钥进行加密和对称密钥的加密

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/54641.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java】—— 泛型:泛型的理解及其在集合(List,Set)、比较器(Comparator)中的使用

目录 1. 泛型概述 1.1 生活中的例子 1.2 泛型的引入 2. 使用泛型举例 2.1 集合中使用泛型 2.1.1 举例 2.1.2 练习 2.2 比较器中使用泛型 2.2.1 举例 2.2.2 练习 1. 泛型概述 1.1 生活中的例子 举例1:中药店,每个抽屉外面贴着标签 举例2&…

图示详解OpenEuler下 DNS安装、配置与测试

前言 DNS配置内容、步骤、参数较多,初学者很难短时间掌握,另外,理解DNS工作原理也有一定的难度,一次配置成功的概率不大,因此,建议在配置DNS之前,先读一下之前笔者的博文《详解DNS工作原理及实…

(20)MATLAB使用卡方(chi-square)分布生成Nakagami-m分布

文章目录 前言一、使用卡方分布函数生成Nakagami分布随机变量二、MATLAB仿真1.仿真代码2.运行结果 前言 Nakagami分布随机变量的生成,可以使用gamma分布实现,也可以使用卡方(chi-square)分布随机变量生成。使用伽马(g…

120页满分PPT | 企业级业务架构和IT架构规划方案

方案内容综述 方案涵盖了从战略分析到具体实施路径的内容。提出了IT架构规划的工作思路,包括项目启动、部门访谈、资料收集、内部数据库搜索与先进实践研究等步骤,旨在通过这些步骤完成现状及差距分析,并基于此设计未来的应用架构、数据架构…

算法:724.寻找数组的中心下标

题目 链接:leetcode链接 思路分析(前缀和) 根据题意,我们可以将数组看成三个部分 [left] [mid] [right] 我们只需要[left]区间内的元素和等于[right]区间的元素和即可,此时mid就是中心下标 那么我们可以借助前缀和思…

鸿蒙开发之ArkUI 界面篇 二十 position绝对定位及层级zIndex

position控制组件的位置,可以实现层叠效果,Android中的FramLayout,通常用在左上角有些图标之类,绝对定位后的组件不占用自身原有位置,每个子组件都有这个属性,只是不用这个属性的时候不起作用,.zIndex()属性要和positi…

微服务——分布式事务

目录 分布式事务 1.1分布式事务的特性 1.2分布式事务应用背景 ​编辑 1.3.认识Seata 1.4部署TC服务 1.4.1.准备数据库表 1.4.2.准备配置文件 1.4.3.Docker部署 1.5.微服务集成Seata 1.5.1.引入依赖 1.5.2.改造配置 1.5.3.添加数据库表 ​编辑1.6.XA模式 1.6.1.两…

聊聊Mysql的MVCC

1 什么是MVCC? MVCC,是Multiversion Concurrency Control的缩写,翻译过来是多版本并发控制,和数据库锁一样,他也是一种并发控制的解决方案。 我们知道,在数据库中,对数据的操作主要有2种&#…

【数据结构 | PTA】表

文章目录 7-1 重排链表7-2 链表去重7-3 两个有序链表序列的合并7-4 两个有序链表序列的交集 7-1 重排链表 输入格式: 每个输入包含1个测试用例。每个测试用例第1行给出第1个结点的地址和结点总个数,即正整数N (≤105)。结点的地址是5位非负整数&#xff…

K8s持久化存储PV和PVC(通俗易懂)

一、PV和PVC的引入 Volume 提供了非常好的数据持久化方案,不过在可管理性上还有不足。 拿前面 AWS EBS 的例子来说,要使用 Volume,Pod 必须事先知道如下信息: 当前 Volume 来自 AWS EBS。EBS Volume 已经提前创建,并且知道确切的 volume-id。Pod 通常是由应用的开发人员…

Linux安装配置Jupyter Lab并开机自启

文章目录 1、安装配置jupyter lab首先需要使用pip3安装:生成配置文件和密码: 2、设置开机自启首先通过which jupyter查询到可执行文件路径:设置自启服务: 1、安装配置jupyter lab 首先需要使用pip3安装: pip3 instal…

细说机器学习和深度学习

背景 平常业务开发中每天都要接触到机器学习和深度学习的概念,在听了很多大佬的普及后,发现甚是有趣。于是小编想着着手开始学习这部分的内容。 那废话不多说,就从最基础的机器学习和神经网络开始~ 一、机器学习基础 1、机器学习是什么&a…

2024 uniapp入门教程 01:含有vue3基础 我的第一个uniapp页面

uni-app官网uni-app,uniCloud,serverless,快速体验,看视频,10分钟了解uni-app,为什么要选择uni-app?,功能框架图,一套代码,运行到多个平台https://uniapp.dcloud.net.cn/ 准备工作:HBuilder X 软件 HBuilder X 官网下载&#xf…

职场上的人情世故,你知多少?这五点一定要了解

职场是一个由人组成的复杂社交网络,人情世故在其中起着至关重要的作用。良好的人际关系可以帮助我们更好地融入团队,提升工作效率,甚至影响职业发展。在职场中,我们需要了解一些关键要素,以更好地处理人际关系&#xf…

泛微流程隐藏按钮

隐藏右键菜单的按钮 控制台输入 mobx.toJS(WfForm.getGlobalStore().rightMenu.rightMenus) 获取相对应 type在js中进行隐藏 ecodeSDK.overwritePropsFnQueueMapSet(WeaRightMenu,{ //复写组件名隐藏菜单fn:(newProps)>{ //newProps代表组件参数newProps.datas newProps.…

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation

题目:用于视觉语言导航的层次化跨模态智能体 摘要 1. 问题背景和现有方法 VLN任务:这是一种复杂的任务,要求智能体基于视觉输入和自然语言指令进行导航。 现有方法的局限性:之前的工作大多将这个问题表示为离散的导航图&#x…

MySQL基础教程(一):连接数据库和使用表

这个专栏用来讲解 MySQL 数据的基本语法和用法。本教程的目的是方便查询 MySQL 的用法,因此对于原理的讲解会偏少一些,但特点就是会有很多实验操作图。 本专栏使用的源材料是《MySQL必知必会》这本书的源代码。 文章目录 1. 连接 MySQL 数据库2. 创建数…

【物流配送中心选址问题】基于改进粒子群算法

课题名称: 基于改进粒子群算法的物流配送中心选址问题 改进方向:动态惯性权重优化粒子群算法 代码获取方式: 模型描述: 待补充 Matlab仿真结果: 1. 模型优化后的仿真结果 2. 初始解对应的物流配送路径图 3. 粒子…

Tianrui Green Shield

Tianrui Green Shield,即天锐绿盾,是一款专注于企业数据防泄密的软件系统。以下是对天锐绿盾的详细介绍: 一、基本信息 产品名称:天锐绿盾(又名绿盾信息安全管理软件)公司官网:www.drhchina.co…

VMware中Ubuntu系统Docker正常运行但网络不通(已解决)

问题描述:在VMware中的Ubuntu系统下部署了Docker,当在docker容器中运行Eureka微服务时,发现Eureka启动正常,但无法通过网页访问该容器中Eureka。 解决办法如下: 1、创建桥接网络:test-net sudo docker n…