深度学习项目----用LSTM模型预测股价(包含LSTM网络简介,代码数据均可下载)

前言

  • 前几天在看论文,打算复现,论文用到了LSTM,故这一篇文章是小编学LSTM模型的学习笔记;
  • LSTM感觉很复杂,但是结合代码构建神经网络,又感觉还行;
  • 本次学习的案例数据来源于GitHub,在本文案例前有数据和本人代码文件的网盘链接,想学习的可以下载,当然也希望大家能够批评指针,一起学习。

文章目录

  • 1、LSTM讲解
    • 1、网络结构
    • 2、解释
    • 3、前言
  • 2、案例
    • 1、数据分析
      • 1、导入库
      • 2、导入数据
      • 3、数据预处理
      • 4、特征选择
      • 5、数据归一化
      • 6、构建目标值
      • 7、将数据转化为时间序列数据
      • 8、训练集和测试集的构建
      • 9、动态加载数据
    • 2、构建LSTM网络
    • 3、模型训练
      • 1、设置超参数
      • 2、训练集训构建
      • 3、测试集构建
      • 4、正式训练
    • 4、结果展示
      • 1、损失结果展示
      • 2、训练集中原始值和预测值展示(反归一化)
      • 3、误差检验

1、LSTM讲解

由于本人现在没有学RNN模型,故学习LSTM只聚焦于两个模块:

  • LSTM的三种类型门:输入门、遗忘门、输出门;
  • LSTM的隐藏层包含“隐状态”和“记忆元”,只有隐状态会传递到输出层,而记忆元完全属于内部信息;
  • 至于LSTM可以缓解梯度消失和梯度爆炸,就等后面学到RNN之后在详细学习。

1、网络结构

LSTM神经网络简图(用ppt太难画了)

在这里插入图片描述

  • C:记忆细胞,Ct-1,上一个记忆状态,Ct当下记忆状态
  • H:隐藏状态

2、解释

  1. 遗忘门(Forget Gate)

    • 对输入信息x,进行遗忘,选择需要记忆的东西,假如:我们考完了高数,选择需要备考线性代数,这个时候当我们进入这个门时候,需要选择遗忘高数内容(虽然现实不可能)。

    f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t=\sigma(W_f\cdot[h_{t-1},x_t]+b_f) ft=σ(Wf[ht1,xt]+bf)

    • 其中,Wf是权重矩阵,bf是偏置项,σ是 Sigmoid 激活函数,用于决定丢弃多少前一个单元状态的信息。
  2. 输入门(Input Gate)

    • It,选择记忆,假如:我们复习线性代数的时候,可能有些知识是不需要记忆的,而这门的作用就是这个,过滤掉没有用的知识。

    i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) c ~ t = tanh ⁡ ( W c ⋅ [ h t − 1 , x t ] + b c ) i_t=\sigma(W_i\cdot[h_{t-1},x_t]+b_i)\\\tilde{c}_t=\tanh(W_c\cdot[h_{t-1},x_t]+b_c) it=σ(Wi[ht1,xt]+bi)c~t=tanh(Wc[ht1,xt]+bc)

    • 其中,Wi和 Wc是权重矩阵,bi和 bc*是偏置项,σ 是 Sigmoid 激活函数,tanh⁡是双曲正切激活函数,用于生成候选单元状态。
  3. 单元状态(Cell State)

    • 这个时候,我们记忆力多少呢?这个门相当于我们复习完一次在脑子里还剩下多少知识

    c t = f t ⊙ c t − 1 + i t ⊙ c ~ t c_t=f_t\odot c_{t-1}+i_t\odot\tilde{c}_t ct=ftct1+itc~t

    • 其中,⊙是逐元素乘法(Hadamard product),用于更新单元状态。
  4. 输出门(Output Gate)

    • 输出隐藏维度,相当于我们考试成绩,在神经网络中,它相当于输出多少维度特征

    o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) h t = o t ⊙ tanh ⁡ ( c t ) o_t=\sigma(W_o\cdot[h_{t-1},x_t]+b_o)\\h_t=o_t\odot\tanh(c_t) ot=σ(Wo[ht1,xt]+bo)ht=ottanh(ct)

    • 其中,Wo 是权重矩阵,bo 是偏置项,σ 是 Sigmoid 激活函数,tanh是双曲正切激活函数,用于生成当前时间步的隐藏状态。

3、前言

当然,结合案例实战,看代码是如何构建神经网络的才是最重要的,下面就是一个股价预测案例,核心是在于怎么构建LSTM网络结构,怎么进行前向传播

2、案例

数据来源于GitHub,数据和本人代码的文件网盘下载如下:

通过网盘分享的文件:基于LSTM的股价预测(入门).zip
链接: https://pan.baidu.com/s/1ZXFLl_TrhReexyvb5Gp8Xg?pwd=v7t2 提取码: v7t2

1、数据分析

1、导入库

# 导入常用的库
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import torch 
import torch.nn as nn 
# 显示中文
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]  # 显示中文
plt.rcParams['axes.unicode_minus'] = False		# 显示负号

2、导入数据

dates = pd.date_range('2008-08-25', '2017-10-11', freq='B')
df_main = pd.DataFrame(index=dates)
df_aaxj = pd.read_csv("./data_stock/ETFs/aaxj.us.txt", parse_dates=True, index_col=0) # 索引列为 0
df_main = df_main.join(df_aaxj)   # 按照索引列规定数据范围
df_main
OpenHighLowCloseVolumeOpenInt
2008-08-2544.04444.04443.24843.24818975.00.0
2008-08-2643.80243.80243.47143.6605507.00.0
2008-08-2744.56444.56444.45744.4571675.00.0
2008-08-2844.42144.47544.42144.4756687.00.0
2008-08-2944.22444.22444.17144.171446.00.0
.....................
2017-10-0573.50074.03073.50073.9702134323.00.0
2017-10-0673.47073.65073.22073.5792092100.00.0
2017-10-0973.50073.79573.48073.770879600.00.0
2017-10-1074.15074.49074.15074.4801878845.00.0
2017-10-1174.29074.64574.21074.6101168511.00.0

2383 rows × 6 columns

3、数据预处理

# 查看数据类型
df_main.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2383 entries, 2008-08-25 to 2017-10-11
Freq: B
Data columns (total 6 columns):#   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  0   Open     2298 non-null   float641   High     2298 non-null   float642   Low      2298 non-null   float643   Close    2298 non-null   float644   Volume   2298 non-null   float645   OpenInt  2298 non-null   float64
dtypes: float64(6)
memory usage: 194.9 KB
  • 总数量:2383,no_null数量:2298,存在缺失值
  • 数据类型:float64
# 查看缺失值数量
df_main.isnull().sum()

输出:

Open       85
High       85
Low        85
Close      85
Volume     85
OpenInt    85
dtype: int64
  • 85 / 2385 大概为3.5%,缺失值有点多;
  • 缺失值类型为随机丢失值,是收集缺失的;
  • 由于该数据是时间序列,且股票价格和前后关系很大,故采用插值方法填充。
# 插值方法填充缺失值
df_main = df_main.interpolate(method='linear')
# 再次查看缺失值的情况
df_main.isnull().sum()

输出:

Open       0
High       0
Low        0
Close      0
Volume     0
OpenInt    0
dtype: int64
# 统计量分析
df_main.describe()

输出:

OpenHighLowCloseVolumeOpenInt
count2383.0000002383.0000002383.0000002383.0000002.383000e+032383.0
mean52.55969552.83565452.21665452.5524547.177284e+050.0
std8.7738098.6875208.9301448.8052417.704731e+050.0
min23.79000024.60500019.69900022.7260001.120000e+020.0
25%48.98850049.31300048.55250048.9815002.789905e+050.0
50%53.65300053.93200053.43200053.6530005.040570e+050.0
75%57.27050057.48400056.98350057.2145008.812500e+050.0
max74.29000074.64500074.21000074.6100001.048028e+070.0
# 相关性分析
df_main.corr()

输出:

OpenHighLowCloseVolumeOpenInt
Open1.0000000.9992560.9971430.9986080.265971NaN
High0.9992561.0000000.9965430.9992760.268923NaN
Low0.9971430.9965431.0000000.9974680.261464NaN
Close0.9986080.9992760.9974681.0000000.264884NaN
Volume0.2659710.2689230.2614640.2648841.000000NaN
OpenIntNaNNaNNaNNaNNaNNaN
  • 结合生活情况,选取特征:open、high、low、close

4、特征选择

# 选取特征:open、high、low、close
sel_features = ['Open', 'High', 'Low', 'Close']
df_main = df_main[sel_features]  # 列索引
# 查看前几条数据
df_main.head(3)

输出:

OpenHighLowClose
2008-08-2544.04444.04443.24843.248
2008-08-2643.80243.80243.47143.660
2008-08-2744.56444.56444.45744.457
# 股价收盘价展示
df_main[['Close']].plot()
plt.title('股价收盘价走势')
plt.ylabel('股票价格')
plt.xlabel('时间')
plt.show()


在这里插入图片描述

5、数据归一化

from sklearn.preprocessing import MinMaxScaler
# 创建归一化
scaler = MinMaxScaler(feature_range=(-1, 1))
# 归一化
for col in sel_features:df_main[col] = scaler.fit_transform(df_main[col].values.reshape(-1, 1))  # -1:自动推断长度,列数量
# 数据展示
df_main.head(3)

输出:

OpenHighLowClose
2008-08-25-0.197861-0.223062-0.135991-0.208928
2008-08-26-0.207446-0.232734-0.127809-0.193046
2008-08-27-0.177267-0.202278-0.091633-0.162324

6、构建目标值

由于没有目标值,故需要新建,目标值为下一次收盘价格

# 创建目标值
df_main['target'] = df_main['Close'].shift(-1) # 选取下一个目标值
# 向前移动一位,故最后缺一行
df_main = df_main.dropna()
# 统一数据类型
df_main = df_main.astype(np.float32)
import seaborn as sns
# 计算相关性
corr_matrix = df_main.corr()
# 绘图
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('相关性分析')
plt.show()


在这里插入图片描述

  • 突然感觉这一步很多余,因为股价么,开盘,涨幅,收盘相关性就应该是极强的

7、将数据转化为时间序列数据

由于股价是数据金融数据,不属于时间序列数据,故为了更好预测,需要将数据转化为金融数据。

def create_time_data(data, seq):  # seq时间序列窗口长度# 创建存储特征数据、目标检测容器data_feat, data_target = [], []# index开始,构建长度seq长度数据for index in range(len(data) - seq):data_feat.append(data[['Open', 'High', 'Low', 'Close']][index: index + seq].values)data_target.append(data['target'][index: index + seq])# 将数据转化为numpy数组data_feat = np.array(data_feat)data_target = np.array(data_target)return data_feat, data_target
# 查看转化为时间序列格式
df_main[['Open', 'High', 'Low', 'Close']][0: 20].values

输出:

array([[-0.19786139, -0.22306155, -0.1359909 , -0.2089276 ],[-0.20744555, -0.23273382, -0.12780906, -0.19304602],[-0.17726733, -0.20227818, -0.09163288, -0.16232364],[-0.1829307 , -0.20583533, -0.09295372, -0.1616298 ],[-0.19073267, -0.21586731, -0.10212617, -0.17334823],[-0.19764356, -0.22284172, -0.10755628, -0.17905328],[-0.20455445, -0.22981615, -0.11298637, -0.1847583 ],[-0.26768318, -0.28892887, -0.17543249, -0.24797626],[-0.28574258, -0.3117506 , -0.21487406, -0.28968468],[-0.33833665, -0.33721024, -0.2418044 , -0.28833553],[-0.27168316, -0.29316548, -0.1908789 , -0.24585614],[-0.28011882, -0.30607513, -0.21553448, -0.29249865],[-0.3281584 , -0.34580335, -0.24672085, -0.31716907],[-0.37619802, -0.38553157, -0.27790722, -0.3418395 ],[-0.3779802 , -0.4044764 , -0.2841445 , -0.36458254],[-0.40669307, -0.43381295, -0.33151108, -0.41153342],[-0.45421782, -0.4803757 , -0.37579572, -0.44086808],[-0.472     , -0.49972022, -0.400488  , -0.48681673],[-0.47366336, -0.43888888, -0.375172  , -0.38705572],[-0.36376238, -0.32893685, -0.26047954, -0.28174388]],dtype=float32)

8、训练集和测试集的构建

# 定义划分函数
def train_test(data_feat, data_target, test_size, seq):# 训练集大小train_size = data_feat.shape[0] - test_size # 划分训练集和测试集,并将数据转化为 张量 格式train_x = torch.from_numpy(data_feat[: train_size].reshape(-1, seq, 4)).type(torch.Tensor)test_x = torch.from_numpy(data_feat[train_size:].reshape(-1, seq, 4)).type(torch.Tensor)train_y = torch.from_numpy(data_target[:train_size].reshape(-1, seq, 1)).type(torch.Tensor)test_y  = torch.from_numpy(data_target[train_size:].reshape(-1, seq, 1)).type(torch.Tensor)# 返回return train_x, train_y, test_x, test_y# 数据定义
data = df_main 
seq = 6   # 窗口大小:这里设置为6,原因:: 股价数据中6天为一周
test_size = int(len(data) * 0.2)# 创建时间序列数据
feat, target = create_time_data(data, seq)# 创建划分数据
train_x, train_y, test_x, test_y = train_test(feat, target, test_size, seq)
# 输出维度
train_x.shape, train_y.shape, test_x.shape, test_y.shape

输出:

(torch.Size([1900, 6, 4]),torch.Size([1900, 6, 1]),torch.Size([476, 6, 4]),torch.Size([476, 6, 1]))

9、动态加载数据

from torchvision import transforms, datasetsbatch_size = 6   # 每一次那6天数据进行训练# 加载数据
train_data = torch.utils.data.TensorDataset(train_x, train_y)
test_data = torch.utils.data.TensorDataset(test_x, test_y)# 动态加载数据
train_dl = torch.utils.data.DataLoader(dataset=train_data,batch_size=batch_size,shuffle=True)test_dl = torch.utils.data.DataLoader(dataset=test_data,batch_size=batch_size,shuffle=True)

2、构建LSTM网络

class LSTM(nn.Module):def __init__(self, input_dim, hidden_dim, num_layers,output_dim):super(LSTM, self).__init__()# 定义隐藏层维度self.hidden_dim = hidden_dim# 定义lstm层的数量self.num_layers = num_layers# 构建lstm模型self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)# 构建全连接层self.fc = nn.Linear(hidden_dim, output_dim)def forward(self, x):# 初始化隐藏状态和细胞状态h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()# 前向传播lstmout, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))# 分类out = self.fc(out)# 返回结果return out 
# 创建并且打印模型参数
# 输入特征:4,输出特征:1
model = LSTM(input_dim=4, hidden_dim=32, num_layers=2, output_dim=1)
model

输出:

LSTM((lstm): LSTM(4, 32, num_layers=2, batch_first=True)(fc): Linear(in_features=32, out_features=1, bias=True)
)

3、模型训练

1、设置超参数

# 创建损失函数
loss_fn = torch.nn.MSELoss()
# 学习率
learn_rate = 0.01
# 创建优化器
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)

2、训练集训构建

def train(dataloader, model, loss_fn, optimizer):# 获取批次大小batch_size = len(dataloader)  # 总数 / 32# 准确率和损失率train_loss = 0for X, y in dataloader:  # 每一批次的规格请看上面:动态加载数据哪里# 预测pred = model(X)# 计算损失loss = loss_fn(pred, y)# 梯度清零optimizer.zero_grad()# 求导loss.backward()# 梯度下降法更新optimizer.step()# 误差train_loss += loss.item()   # .item 获取数据项# 计算损失函数和梯度train_loss /= batch_sizereturn train_loss

3、测试集构建

def test(dataloader, model, loss_fn):batch_size = len(dataloader)# 准确率和损失率test_loss = 0with torch.no_grad():for X, y in dataloader:# 预测和计算损失pred = model(X)loss = loss_fn(pred, y)test_loss += loss.item()# 计算损失率    test_loss /= batch_sizereturn test_loss

4、正式训练

train_loss = []
test_loss = []epochs = 15for epoch in range(epochs):model.train()epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_loss = test(test_dl, model, loss_fn)train_loss.append(epoch_train_loss)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_mse:{:.10f}, Test_mse:{:.10f}')print(template.format(epoch+1, epoch_train_loss, epoch_test_loss))
Epoch: 1, Train_mse:0.0055270789, Test_mse:0.0028169709
Epoch: 2, Train_mse:0.0014304496, Test_mse:0.0032940961
Epoch: 3, Train_mse:0.0016769003, Test_mse:0.0014444893
Epoch: 4, Train_mse:0.0013827066, Test_mse:0.0023709078
Epoch: 5, Train_mse:0.0013644575, Test_mse:0.0005126200
Epoch: 6, Train_mse:0.0011645519, Test_mse:0.0009766717
Epoch: 7, Train_mse:0.0010370992, Test_mse:0.0026354755
Epoch: 8, Train_mse:0.0011004983, Test_mse:0.0005752990
Epoch: 9, Train_mse:0.0011330271, Test_mse:0.0013168041
Epoch:10, Train_mse:0.0011555004, Test_mse:0.0016195212
Epoch:11, Train_mse:0.0015111874, Test_mse:0.0010681283
Epoch:12, Train_mse:0.0010495648, Test_mse:0.0008801822
Epoch:13, Train_mse:0.0009528522, Test_mse:0.0006430979
Epoch:14, Train_mse:0.0010829600, Test_mse:0.0006819312
Epoch:15, Train_mse:0.0011495422, Test_mse:0.0013490517

4、结果展示

1、损失结果展示

# 绘制损失函数
epoch_range = range(epochs)plt.plot(epoch_range, train_loss, label='Training Mse')
plt.plot(epoch_range, test_loss, label='Test Mse')
plt.legend(loc='upper right')
plt.title('Mse')
plt.show()


在这里插入图片描述

分析

  • 模型在归一化后的预测效果中,训练集和测试集的mse,均小于1%,说明了该模型对这个数据的预测有效性;
  • 下面将进行反归一化,将预测数据进行可视化展示,可以更直观观测效果。

2、训练集中原始值和预测值展示(反归一化)

y_train_pred = model(train_x)
y_test_pred = model(test_x)y_train_pred = scaler.inverse_transform(y_train_pred.detach().numpy()[:,-1,0].reshape(-1,1))
y_train = scaler.inverse_transform(train_y.detach().numpy()[:,-1,0].reshape(-1,1))
y_test_pred = scaler.inverse_transform(y_test_pred.detach().numpy()[:,-1,0].reshape(-1,1))
y_test = scaler.inverse_transform(test_y.detach().numpy()[:,-1,0].reshape(-1,1))
# 训练绘图展示
plt.plot(y_train_pred, label="pred_data")
plt.plot(y_train, label="true_data")
plt.legend()
plt.show()


在这里插入图片描述

# 测试绘图展示
plt.plot(y_test_pred, label="pred_data")
plt.plot(y_test, label="true_data")
plt.legend()
plt.show()


在这里插入图片描述

3、误差检验

from sklearn.metrics import mean_squared_errortrainScore = mean_squared_error(y_train, y_train_pred)
testScore = mean_squared_error(y_test, y_test_pred)print("Trian mse: ", trainScore)
print("Test mse: ", testScore)
Trian mse:  0.60466486
Test mse:  0.8240372

分析

  • Trian mse: 0.61244047,Test mse: 0.8975438,结合原始数据大小,进一步验证了模型的有效性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/54577.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

越差越好?为什么简单反而赢了,这背后究竟有什么秘诀?

你有没有发现,软件界里那些最成功的产品,往往并不是最复杂、最强大的?我们用的很多东西,看起来功能普通,甚至有些粗糙,但就是这样简陋的设计,反而成了市场上的赢家。 也许你玩过Flappy Bird这个游戏:它的设计非常简单,玩家只需要点击屏幕让小鸟飞行,避开管道障碍。游…

Llama 3.2 智能代理开发教程

构建研究代理可能很复杂&#xff0c;但使用 LangChain 和 Ollama&#xff0c;它会变得更加简单和模块化。 在本教程中&#xff0c;我们将向你展示如何基于Llama 3.2创建一个研究代理&#xff0c;该代理可以路由查询、执行网络搜索并使用工作流和 LLM 的组合生成详细响应。最后…

出栈入栈次序匹配

学习栈的过程中&#xff0c;我们一定见过下面两题&#xff0c;在当时我们可能费尽心思才找出不可能的一个出栈序列&#xff0c;但是如果进栈元素很多&#xff0c;那么找出出栈序列时4&#xff0c;头发就要掉光了&#xff01;那么我们是否可以实现一串代码&#xff0c;来帮助我们…

MySQL 篇-深入了解视图、SQL 优化(主键优化、order by 优化、group by 优化、update 优化等)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 SQL 优化 1.1 SQL 优化 - 插入数据 1.2 SQL 优化 - 主键优化 1.2.1 页分裂 1.2.2 页合并 1.2.3 主键设计原则 1.3 SQL 优化 - order by 优化 1.3.1 单字段排序 1.…

重学SpringBoot3-集成Redis(五)之布隆过滤器

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-集成Redis&#xff08;五&#xff09;之布隆过滤器 1. 什么是布隆过滤器&#xff1f;基本概念适用场景 2. 使用 Redis 实现布隆过滤器项目依赖Redis 配置…

【python实操】python小程序之对象的属性操作

引言 python小程序之对象的属性操作 文章目录 引言一、对象的属性操作1.1 题目1.2 代码1.3 代码解释 二、思考2.1 添加属性2.2 获取属性 一、对象的属性操作 1.1 题目 给对象添加属性 1.2 代码 class Cat:# 在缩进中书写⽅法def eat(self):# self 会⾃动出现,暂不管print(f…

【前端开发入门】前端开发环境配置

目录 引言一、Vscode编辑器安装1. 软件下载2. 软件安装3. 插件安装 二、Nodejs环境安装及版本控制1. 安装内容2. 使用nvm安装2.1 软件下载并安装2.2 nvm基本指令2.3 nvm下载过慢导致超时解决 三、git安装及配置1. 软件下载2. 软件安装3. 基础配置 四、总结 引言 本系列教程旨在…

知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)

Neo4j简介 Neo4j 是一个基于图结构的 NoSQL 数据库&#xff0c;专门用于存储、查询和管理图形数据。它的核心思想是使用节点、关系和属性来描述数据。图数据库非常适合那些需要处理复杂关系的数据集&#xff0c;如社交网络、推荐系统、知识图谱等领域。 与传统的关系型数据库…

【韩顺平Java笔记】第7章:面向对象编程(基础部分)【227-261】

文章目录 227. 重载介绍228. 重载快速入门229. 重载使用细节230. 重载课堂练习1231. 232. 重载课堂练习2,3233. 可变参数使用233.1 基本概念233.2 基本语法233.3 快速入门案例 234. 可变参数细节235. 可变参数练习236. 作用域基本使用237. 作用域使用细节1238. 作用域使用细节2…

基于FPGA的ov5640摄像头图像采集(二)

之前讲过ov5640摄像头图像采集&#xff0c;但是只包了的摄像头驱动与数据对齐两部分&#xff0c;但是由于摄像头输入的像素时钟与HDMI输出的驱动时钟并不相同&#xff0c;所有需要利用DDR3来将像素数据进行缓存再将像素数据从DDR3中读出&#xff0c;对DDR3的读写参考米联客的IP…

Hallo部署指南

一、介绍 Hallo是由复旦大学、百度公司、苏黎世联邦理工学院和南京大学的研究人员共同提出的一个AI对口型肖像图像动画技术&#xff0c;可基于语音音频输入来驱动生成逼真且动态的肖像图像视频。 该框架采用了基于扩散的生成模型和分层音频驱动视觉合成模块&#xff0c;提高了…

独立站如何批量查收录,独立站批量查询收录的操作方法

独立站批量查询收录是SEO优化过程中的一项重要任务&#xff0c;它有助于网站管理员全面了解网站在搜索引擎中的表现情况。以下是一些常用的独立站批量查询收录的操作方法&#xff1a; 一、使用搜索引擎的Site指令结合自动化工具 编写脚本或配置爬虫&#xff1a; 利用Python、…

【Flutter】- 核心语法

文章目录 知识回顾前言源码分析1. 有状态组件2. 无状态组件3. 组件生命周期4. 常用组件Container组件Text组件Image组件布局组件row colum stack expandedElevntButton按钮拓展知识总结知识回顾 【Flutter】- 基础语法 前言 Flutter是以组件化的思想构建客户端页面的,类似于…

windows C++-创建数据流代理(二)

完整的数据流演示 下图显示了 dataflow_agent 类的完整数据流网络&#xff1a; 由于 run 方法是在一个单独的线程上调用的&#xff0c;因此在完全连接网络之前&#xff0c;其他线程可以将消息发送到网络。 _source 数据成员是一个 unbounded_buffer 对象&#xff0c;用于缓冲…

网站建设中常见的网站后台开发语言有哪几种,各自优缺点都是什么?

市场上常见的网站后台开发语言有PHP、Python、JavaScript、Ruby、Java和.NET等。这些语言各有其独特的优缺点&#xff0c;适用于不同的开发场景和需求。以下是对这些语言的具体介绍&#xff1a; PHP 优点&#xff1a;PHP是一种广泛用于Web开发的动态脚本语言&#xff0c;特别适…

Diffusion models(扩散模型) 是怎么工作的

前言 给一个提示词, Midjourney, Stable Diffusion 和 DALL-E 可以生成很好看的图片&#xff0c;那么它们是怎么工作的呢&#xff1f;它们都用了 Diffusion models&#xff08;扩散模型&#xff09; 这项技术。 Diffusion models 正在成为生命科学等领域的一项尖端技术&…

基于STM32的智能花盆浇水系统设计

引言 本项目设计了一个基于STM32的智能花盆浇水系统。该系统通过土壤湿度传感器检测土壤湿度&#xff0c;当湿度低于设定阈值时&#xff0c;自动启动水泵进行浇水。它还结合了温湿度传感器用于环境监测。该项目展示了STM32在传感器集成、自动控制和节水智能化应用中的作用。 …

Nginx05-基础配置案例

零、文章目录 Nginx05-基础配置案例 1、案例需求 &#xff08;1&#xff09;有如下访问 http://192.168.119.161:8081/server1/location1 访问的是&#xff1a;index_sr1_location1.htmlhttp://192.168.119.161:8081/server1/location2 访问的是&#xff1a;index_sr1_loca…

YoloV9改进策略:BackBone改进|CAFormer在YoloV9中的创新应用,显著提升目标检测性能

摘要 在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV9模型中,以替换其原有的主干网络,这一创新性的改进带来了显著的性能提升。 CAFormer,作为MetaFormer框架下的一个变体,结合了深度可分离卷积和普通自注意力…

Ansible学习之ansible-pull命令

想要知道ansible-pull是用来做什么的&#xff0c;就需要了解Ansible的工作模&#xff0c;Ansible的工作模式有两种&#xff1a; push模式 push推送&#xff0c;这是Ansible的默认模式&#xff0c;在主控机上编排好playbook文件&#xff0c;push到远程主机上来执行。pull模式 p…